~ruther/vhdl-i2c

ref: f32d86dd107b36effe1f257bb5d584aaabc57275 vhdl-i2c/src/i2c/rx.vhd -rw-r--r-- 5.8 KiB
f32d86dd — Rutherther chore: use integer instead of natural when with range 1 year, 3 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
-- i2c interface
    -- scl_pulse_i
    -- scl_stretch_o
    -- sda_o

-- control interface
    -- clk_i
    -- rst_in
    -- start_read_i

-- read interface
    -- read_valid_o
    -- read_ready_o
    -- read_data_o
    -- confirm_read_i
--
library ieee;
use ieee.std_logic_1164.all;

entity rx is

  port (
    -- control part
    clk_i          : in  std_logic;     -- Clock
    rst_in         : in  std_logic;     -- Reset (asynchronous)
    start_read_i   : in  std_logic;     -- Start reading with next scl_pulse

    scl_pulse_i    : in  std_logic;     -- SCL rising edge pulse
    scl_stretch_o  : out std_logic;     -- Stretch SCL (keep SCL 0)
    sda_i          : in  std_logic;     -- SDA data line state

    read_valid_o   : out std_logic;     -- Are there any data on read_data_o?
    read_ready_o   : out std_logic;     -- Is it possible to read anymore, or
                                        -- does data have to be read to flush buffer?
    read_data_o    : out std_logic_vector(7 downto 0);  -- The received data
    confirm_read_i : in  std_logic);    -- Confirm that data have been read

end entity rx;

architecture a1 of rx is
  -- IDLE - not doing anythign
  -- RECEIVING - currently receiving data to the buffer
  -- SAVING - trying to save to the read data output, waiting for data being
  -- read if cannot save
  -- SAVING_STRETCHING - waiting for data being read, should
  -- be sending already, but cannot, since the data are not read,
  -- so stretching SCL
  type rx_state_t is (IDLE, RECEIVING, SAVING, SAVING_STRETCHING);
  signal curr_state : rx_state_t;
  signal next_state : rx_state_t;

  -- Whether state = RECEIVING
  signal curr_receiving : std_logic;
  -- Whether state = SAVING or SAVING_STRETCHING
  signal curr_saving : std_logic;

  -- Whether the read data output is filled
  -- already (it's a register)
  signal curr_read_data_filled : std_logic;
  signal next_read_data_filled : std_logic;

  -- The received data
  signal curr_rx_buffer : std_logic_vector(7 downto 0);
  signal next_rx_buffer : std_logic_vector(7 downto 0);

  -- Bit index that is being received
  signal curr_bit_index : integer range 0 to 7;
  signal next_bit_index : integer range 0 to 7;

  signal curr_read_data : std_logic_vector(7 downto 0);
  signal next_read_data : std_logic_vector(7 downto 0);
begin  -- architecture a1
  read_ready_o <= '1' when curr_state /= SAVING_STRETCHING else '0';
  scl_stretch_o <= '1' when curr_state = SAVING_STRETCHING else '0';
  read_data_o <= curr_read_data;

  -- IDLE -> RECEIVING on start_read,
  -- RECEIVING -> RECEIVING when not received full data
  -- RECEIVING -> SAVING when received all data
  -- SAVING -> SAVING_STRETCHING when cannot overrode data AND start_read
  -- SAVING -> RECEIVING when start_read AND overriding data now
  -- SAVING -> SAVING when cannot override data (data not read yet)
  -- SAVING -> IDLE when can override data
  -- SAVING_STRETCHING -> SAVING_STRETCHING when data not read yet
  -- SAVING_STRETCHING -> RECEIVING when data read

  set_next_state: process(curr_state, start_read_i, curr_bit_index, scl_pulse_i, confirm_read_i) is
  begin  -- process set_next_state
    next_state <= curr_state;

    if curr_state = IDLE then
      if start_read_i = '1' then
        next_state <= RECEIVING;
      end if;
    elsif curr_state = RECEIVING then
      if curr_bit_index = 0 and scl_pulse_i = '1' then
        next_state <= SAVING;
      end if;
    elsif curr_state = SAVING then
      if confirm_read_i = '1' then
        if start_read_i = '1' then
          next_state <= RECEIVING; -- skip SAVING_STRETCHING
        else
          next_state <= IDLE;
        end if;
      elsif start_read_i = '1' then
        next_state <= SAVING_STRETCHING;
      end if;
    elsif curr_state = SAVING_STRETCHING then
      if confirm_read_i = '1' then
        next_state <= RECEIVING;
      end if;
    end if;
  end process set_next_state;

  curr_receiving <= '1' when curr_state = RECEIVING else '0';
  curr_saving <= '1' when curr_state = SAVING or curr_state = SAVING_STRETCHING else '0';

  read_valid_o <= curr_read_data_filled;

  -- TODO: (speedup by one cycle when saving?)
  next_read_data <= curr_read_data when curr_read_data_filled = '1' else
                    next_rx_buffer when next_read_data_filled = '1' and curr_read_data_filled = '0' else
                    (others => '0');

  next_read_data_filled <= '1' when curr_read_data_filled = '1' and confirm_read_i = '0' else
                           '0' when curr_read_data_filled = '1' and confirm_read_i = '1' else
                           '1' when curr_saving = '1' else
                           '0';

  next_bit_index <= curr_bit_index when curr_receiving = '1' and scl_pulse_i = '0' else
                (curr_bit_index - 1) mod 7 when curr_receiving = '1' and scl_pulse_i = '1' else
                7; -- when curr_state /= RECEIVING and next_state = RECEIVING;

  set_next_read_data: process (sda_i, curr_rx_buffer, curr_receiving, curr_saving, curr_bit_index, scl_pulse_i) is
  begin  -- process set_next_read_data
    next_rx_buffer <= curr_rx_buffer;

    if curr_receiving = '1' and curr_saving = '0' and scl_pulse_i = '1' then
      next_rx_buffer(curr_bit_index) <= sda_i;
    end if;
  end process set_next_read_data;

  set_regs: process (clk_i) is
  begin  -- process set_regs
    if rising_edge(clk_i) then          -- rising clock edge
      if rst_in = '0' then              -- synchronous reset (active low)
        curr_read_data <= (others => '0');
        curr_rx_buffer <= (others => '0');
        curr_bit_index <= 0;
        curr_read_data_filled <= '0';
        curr_state <= IDLE;
      else
        curr_read_data <= next_read_data;
        curr_rx_buffer <= next_rx_buffer;
        curr_bit_index <= next_bit_index;
        curr_read_data_filled <= next_read_data_filled;
        curr_state <= next_state;
      end if;
    end if;
  end process set_regs;

end architecture a1;
Do not follow this link