~ruther/uni-mam-arm

ref: 3c9681392ea2c5e13e15c5d94af6590e0ce497eb uni-mam-arm/arm07/src/main.c -rw-r--r-- 15.3 KiB
3c968139 — Rutherther feat(arm07): use rx not empty as not busy flag 3 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include "stm32f401xe.h"
#include "timer.h"
#include <stdint.h>
#include <stdbool.h>
#include <stm32f4xx.h>
#include "exti.h"
#include "pin.h"
#include "registers.h"
#include "display.h"
#include "delay.h"
#include "uart.h"
#include "spi.h"
#include "buffered_peripheral.h"
#include "spi_matrix.h"

void hard_fault_handler() {
  while(1) {}
}

void usage_fault_handler() {
  while(1) {}
}

void nmi_handler() {
  while(1) {}
}

void bus_fault_handler() {
  while(1) {}
}


/*----------------------------------------------------------------------------
 * SystemCoreClockConfigure: configure SystemCoreClock using HSI
                             (HSE is not populated on Nucleo board)
 *----------------------------------------------------------------------------*/
void SystemCoreClockSetHSI(void) {

  RCC->CR |= ((uint32_t)RCC_CR_HSION);                     // Enable HSI
  while ((RCC->CR & RCC_CR_HSIRDY) == 0);                  // Wait for HSI Ready

  RCC->CFGR = RCC_CFGR_SW_HSI;                             // HSI is system clock
  while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI);  // Wait for HSI used as system clock

  FLASH->ACR  = FLASH_ACR_PRFTEN;                          // Enable Prefetch Buffer
  FLASH->ACR |= FLASH_ACR_ICEN;                            // Instruction cache enable
  FLASH->ACR |= FLASH_ACR_DCEN;                            // Data cache enable
  FLASH->ACR |= FLASH_ACR_LATENCY_5WS;                     // Flash 5 wait state

  RCC->CFGR |= RCC_CFGR_HPRE_DIV1;                         // HCLK = SYSCLK
  RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;                        // APB1 = HCLK/4
  RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;                        // APB2 = HCLK/2

  RCC->CR &= ~RCC_CR_PLLON;                                // Disable PLL

  // HSI = 16 MHz
  // PLL configuration:  VCO = HSI/M * N,  Sysclk = VCO/P
  // => Sysclk = 48 MHz, APB1 = 12 MHz, APB2 = 24 MHz
  // Since divider for APB1 is != 1, timer clock is 24 MHz
  RCC->PLLCFGR = ( 16ul                   |                // PLL_M =  16
                 (384ul <<  6)            |                // PLL_N = 384
                 (  3ul << 16)            |                // PLL_P =   8
                 (RCC_PLLCFGR_PLLSRC_HSI) |                // PLL_SRC = HSI
                 (  8ul << 24)             );              // PLL_Q =   8

  RCC->CR |= RCC_CR_PLLON;                                 // Enable PLL
  while((RCC->CR & RCC_CR_PLLRDY) == 0) __NOP();           // Wait till PLL is ready

  RCC->CFGR &= ~RCC_CFGR_SW;                               // Select PLL as system clock source
  RCC->CFGR |=  RCC_CFGR_SW_PLL;
  while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL);  // Wait till PLL is system clock src
}

#define COMMAND_SEPARATOR '\n'

// Button
pin_t user_button;
timer_t button_timer;
exti_t button_exti;
pin_t led;

// Display
matrix_t matrix;
timer_t matrix_timer;

// SPI
pin_t spi_csn;
spi_t matrix_spi;
buffered_transceiver_t matrix_tx;
timer_t spi_csn_timer;

// Uart
uart_t uart;
buffered_transceiver_t uart_rx;

#define MAX_CMD_LENGTH 65

#define AUTO_TOGGLE_CYCLES 1000000
#define MAX_IMAGES 10

#define COLS 8
#define ROWS 8

uint8_t images_count = 4;
uint8_t current_image = 0;
uint8_t images[MAX_IMAGES][8] = {
    {0b11111111, 0b10000001, 0b10000001, 0b10000001, 0b10000001, 0b10000001, 0b10000001, 0b11111111},
    { 0b00000100, 0b00001110, 0b11110001, 0b10000101, 0b10000001, 0b10110001, 0b10110001, 0b11111111 },
    { 0b11111000, 0b11100100, 0b11100010, 0b10000001, 0b10000001, 0b01000010, 0b00100100, 0b00011000 },
    { 0b11000000, 0b10011000, 0b11010000, 0b10011010, 0b10010010, 0b00011010, 0b00000010, 0b00000011 },
};

uint32_t cycle = 0;
bool auto_toggle = false;
bool toggle_next = false;

bool animation = false;

void num_to_string(uint16_t num, char* res, uint16_t digits) {
  for (uint16_t i = 0; i < digits; i++) {
    res[digits - 1 - i] = num % 10 + '0';
    num /= 10;
  }
}

void handle_command(char* cmd, uint16_t len) {
  if (len == 0) {
    return;
  }

  bool handled = false;

  switch (cmd[0]) {
  case 'n': // next
    if (len == 1) {
      handled = true;
      toggle_next = true;
      buffered_transceiver_transmit(&uart_rx, "Switching to next image.\r\n", 0);
    }
    break;
  case 'N': // auto toggle
    if (len == 1) {
      handled = true;
      auto_toggle = !auto_toggle;

      if (auto_toggle) {
        buffered_transceiver_transmit(&uart_rx, "Going to toggle automatically.\r\n", 0);
      } else {
        buffered_transceiver_transmit(&uart_rx, "Manual switch mode.\r\n", 0);
      }
    }
    break;
  case 'a': // animate
    if (len == 1) {
      handled = true;
      animation = !animation;

      if (animation) {
        buffered_transceiver_transmit(&uart_rx, "Animation enabled.\r\n", 0);
      } else {
        buffered_transceiver_transmit(&uart_rx, "Animation disabled.\r\n", 0);
      }
    }
    break;
  case 'u': // upload
    // upload
    // TODO
    break;
  case 's': // number of slots is...
    if (len == 1) {
      handled = true;

      buffered_transceiver_transmit(&uart_rx, "Used slots: ", 0);

      char str[5] = { '\0', '\0', '\r', '\n', '\0' };
      num_to_string(images_count, str, 2);
      buffered_transceiver_transmit(&uart_rx, str, 0);
    }
    break;
  case 'I': // increase intensity
    if (len == 1) {
      matrix_increase_intensity(&matrix);
      buffered_transceiver_transmit(&uart_rx, "Increasing intensity.\r\n", 0);
      handled = true;
    }
    break;
  case 'i': // decrease intensity
    if (len == 1) {
      matrix_decrease_intensity(&matrix);
      buffered_transceiver_transmit(&uart_rx, "Decreasing intensity.\r\n", 0);
      handled = true;
    }
    break;
  case 'h':
    buffered_transceiver_transmit(&uart_rx, "Help:\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " h - show this help messages\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " s - print used slots\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " a - toggle animating\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " n - next image\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " N - automatically switch images\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " I - increase intensity\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " i - decrease intensity\r\n", 0);
    buffered_transceiver_transmit(&uart_rx, " uIMG - upload new image, IMG has \"X\" for 1s and \"-\" for 0s. It should be 64 chars long\r\n", 0);
    handled = true;
    break;
  default:
    break;
  }

  if (!handled) {
    buffered_transceiver_transmit(&uart_rx, "Unknown command!\r\n", 0);
  }
}

char* receive_command(uint16_t* length)
{
  static char cmd[MAX_CMD_LENGTH];
  static uint16_t index;

  char* current_char = (cmd + index);

  while (buffered_transceiver_receive(&uart_rx, current_char, 1) == 1) {
    // echo
    buffered_transceiver_transmit(&uart_rx, current_char, 1);

    if (*current_char == COMMAND_SEPARATOR) {
      buffered_transceiver_transmit(&uart_rx, "\r", 1);
      *current_char = '\0';
      *length = index;
      index = 0;
      return cmd;
    }

    index++;
  }

  // Commands are separated either through max length, or by new line
  if (index == MAX_CMD_LENGTH + 1) {
    *length = MAX_CMD_LENGTH;
    index = 0;
    return cmd;
  }

  return NULL;
}

void next_image()
{
  if (matrix.state != MATRIX_STABLE) {
    return;
  }

  current_image++;
  current_image %= images_count;

  matrix_set_buffer(&matrix, MATRIX_SLOT_OTHER, &images[current_image][0]);

  if (animation) {
    matrix_animate_swap(&matrix);
  } else {
    matrix_swap(&matrix);
  }
}

void app_loop()
{
  while (1) {

    if (auto_toggle) {
      pin_set(&led);
    } else {
      pin_reset(&led);
    }

    if (auto_toggle && cycle >= AUTO_TOGGLE_CYCLES) {
      next_image();
      cycle = 0;
    } else if (toggle_next) {
      next_image();
      toggle_next = false;
    }

    uint16_t command_len;
    char* cmd = receive_command(&command_len);
    if (cmd != NULL) {
      handle_command(cmd, command_len);
    }

    cycle++;
  }
}

void main()
{
  // Setup
  SystemCoreClockSetHSI();
  systick_configure();

  RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
  RCC->APB1ENR |= RCC_APB1ENR_TIM3EN | RCC_APB1ENR_TIM4EN | RCC_APB1ENR_USART2EN | RCC_APB1ENR_TIM2EN;
  RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2LPENR_SPI1LPEN;

  { // UART init
    pin_t pin_rx;
    pin_t pin_tx;

    #define UART_RX_BUFFER_SIZE 64
    #define UART_TX_BUFFER_SIZE 300

    static queue_t uart_rx_queue, uart_tx_queue;
    static uint16_t uart_rx_buffer[UART_RX_BUFFER_SIZE], uart_tx_buffer[UART_TX_BUFFER_SIZE];

    queue_init(&uart_rx_queue, sizeof(char), UART_RX_BUFFER_SIZE, uart_rx_buffer);
    queue_init(&uart_tx_queue, sizeof(char), UART_TX_BUFFER_SIZE, uart_tx_buffer);

    bool usart_generic_can_receive(void* peripheral);
    bool usart_generic_can_transmit(void* peripheral);

    uint16_t usart_generic_receive(void* peripheral, void* buffer, uint16_t max_size);
    uint16_t usart_generic_transmit(void* peripheral, void* data, uint16_t size);

    buffered_transceiver_vtable_t vtable = {
      .can_receive = usart_generic_can_receive,
      .can_transmit = usart_generic_can_transmit,
      .transmit = usart_generic_transmit,
      .receive = usart_generic_receive,
    };

    buffered_transceiver_init(&uart_rx, &uart_rx_queue, &uart_tx_queue, &uart, vtable);

    pin_init(&pin_tx, GPIOA, 2);
    pin_init(&pin_rx, GPIOA, 3);

    pin_into_alternate(&pin_rx, 7);
    pin_into_alternate(&pin_tx, 7);

    usart_init(&uart, USART2, 2);
    usart_configure_speed(&uart, 12000000, 9600);
    usart_configure_uart(&uart, true, USART_WORD_9_BITS, true,
                         USART_PARITY_EVEN, USART_STOP_BIT_ONE);
    usart_enable_interrupt(&uart, false, true);
    usart_configure_transmitter(&uart, true);
    usart_configure_receiver(&uart, true);
  }

  { // SPI init
    pin_t pin_mosi;
    pin_t pin_csn;
    pin_t pin_clk;

    #define SPI_RX_BUFFER_SIZE 0
    #define SPI_TX_BUFFER_SIZE 10

    static queue_t spi_rx_queue, spi_tx_queue;
    static uint16_t spi_rx_buffer[SPI_RX_BUFFER_SIZE], spi_tx_buffer[SPI_TX_BUFFER_SIZE];

    queue_init(&spi_rx_queue, sizeof(uint16_t), SPI_RX_BUFFER_SIZE, spi_rx_buffer);
    queue_init(&spi_tx_queue, sizeof(uint16_t), SPI_TX_BUFFER_SIZE, spi_tx_buffer);

    bool spi_generic_can_receive(void* peripheral);
    bool spi_generic_can_transmit(void* peripheral);

    uint16_t spi_generic_receive(void* peripheral, void* buffer, uint16_t max_size);
    uint16_t spi_generic_transmit(void* peripheral, void* data, uint16_t size);

    buffered_transceiver_vtable_t vtable = {
      .can_receive = spi_generic_can_receive,
      .can_transmit = spi_generic_can_transmit,
      .transmit = spi_generic_transmit,
      .receive = spi_generic_receive,
    };

    buffered_transceiver_init(&matrix_tx, &spi_rx_queue, &spi_tx_queue, &matrix_spi, vtable);

    pin_init(&pin_mosi, GPIOA, 7);
    pin_init(&pin_csn, GPIOA, 4);
    pin_init(&pin_clk, GPIOB, 3);

    pin_into_alternate(&pin_mosi, 5);
    /* pin_into_alternate(&pin_csn, 5); */
    pin_into_alternate(&pin_clk, 5);

    pin_set(&pin_csn);
    pin_into_output_pushpull(&pin_csn);

    spi_init(&matrix_spi, pin_csn, SPI1, 1);
    spi_master_configure_speed(&matrix_spi, 7);
    spi_master_configure(&matrix_spi, false, false, false,
                         SPI_MSB_FIRST, SPI_FRAME_16_BIT);

    spi_enable_interrupt(&matrix_spi, false, true);
    spi_master_enable(&matrix_spi, true);
  }

  { // Matrix, timer init
    matrix_init(&matrix, &matrix_tx, 5);
    matrix_setup(&matrix);
    matrix_enable(&matrix, true);

    matrix_set_buffer(&matrix, MATRIX_SLOT0, images[current_image]);
    timer_init(&matrix_timer, TIM3, 3);
    timer_set_refresh(&matrix_timer, 20);
    timer_configure(&matrix_timer, 0, 60000, 0);
    timer_enable_interrupt(&matrix_timer, true, false);
    timer_enable(&matrix_timer);
  }

  { // Button, exti, timer
    pin_init(&user_button, GPIOC, 13);
    pin_into_input(&user_button);

    pin_init(&led, GPIOA, 5);
    pin_into_output(&led);

    exti_init(&button_exti, 13, EXTI, SYSCFG);
    exti_external_interrupt(&button_exti, 2);
    exti_both_edges_interrupt(&button_exti);
    exti_clear_interrupt(&button_exti);
    exti_enable_interrupt(&button_exti);

    timer_init(&button_timer, TIM2, 2);
    timer_set_refresh(&button_timer, 400);
    timer_configure(&button_timer, 0, 60000, 1);

    timer_enable_interrupt(&button_timer, true, false);
  }

  __enable_irq();

  // Application
  app_loop();
}

void EXTI15_10_handler(void) {
  if (exti_is_interrupt(&button_exti)) {
    exti_clear_interrupt(&button_exti);

    bool button_pressed = !pin_read(&user_button);
    if (button_pressed) { // start timer on button press
      timer_set_counter(&button_timer, 0);
      timer_clear_update_interrupt(&button_timer);
      timer_enable(&button_timer);

      // handle short presses, prevent registering bouncing
    } else if (timer_count(&button_timer) > 10) {
      timer_disable(&button_timer);
      timer_set_counter(&button_timer, 0);

      // short press (under 1 s)
      if (auto_toggle) {
        auto_toggle = false;
      } else {
        toggle_next = true;
      }
    }
  }
}

void TIM2_handler(void) {
  if (timer_is_update_interrupt(&button_timer)) {
    timer_clear_update_interrupt(&button_timer);

    // long press (over 1 s)
    auto_toggle = !auto_toggle;
    cycle = 0;
  }
}

void TIM3_handler(void) {
  timer_clear_update_interrupt(&matrix_timer);
  matrix_update(&matrix, &matrix_tx);
}

// A flag to prevent spi communication,
// to toggle csn high
bool spi_can_transmit_flag = true;

void SPI1_handler(void) {
  // using can receive as not busy interrupt
  if (spi_can_receive(&matrix_spi)) {
    uint16_t tmp;
    spi_receive(&matrix_spi, &tmp, 1);

    spi_pulse_csn(&matrix_spi);
    spi_can_transmit_flag = true;
    buffered_transceiver_trigger_transmit(&matrix_tx, 1);
  }
}

void USART2_handler(void) {
  if (usart_can_receive(&uart)) {
    buffered_transceiver_trigger_receive(&uart_rx, 1);
  }
  if (usart_can_transmit(&uart)) {
    if (!buffered_transceiver_trigger_transmit(&uart_rx, 1)) {
      usart_enable_interrupt(&uart, false, true);
    }
  }
}


bool spi_generic_can_receive(void *peripheral) {
  return spi_can_receive((spi_t*)peripheral);
}
bool spi_generic_can_transmit(void *peripheral) {
  return spi_can_transmit_flag && (((spi_t*)peripheral)->periph->SR & SPI_SR_BSY) == 0;
}

uint16_t spi_generic_receive(void *peripheral, void *buffer,
                             uint16_t max_size) {
  return spi_receive((spi_t*)peripheral, buffer, max_size);
}
uint16_t spi_generic_transmit(void *peripheral, void *data, uint16_t size) {
  // enable the interrupt so that we can send the rest
  uint16_t ret = spi_transmit((spi_t*)peripheral, data, size);
  spi_can_transmit_flag = false;
  return ret;
}

bool usart_generic_can_receive(void *peripheral) {
  return usart_can_receive((uart_t*)peripheral);
}
bool usart_generic_can_transmit(void *peripheral) {
  return usart_can_transmit((uart_t*)peripheral);
}

uint16_t usart_generic_receive(void *peripheral, void *buffer,
                             uint16_t max_size) {
  return usart_receive((uart_t*)peripheral, buffer, max_size);
}
uint16_t usart_generic_transmit(void *peripheral, void *data, uint16_t size) {
  uint16_t ret = usart_transmit((uart_t*)peripheral, data, size);
  // enable the interrupt so that we can send the rest
  usart_enable_interrupt((uart_t*)peripheral, true, true);
  return ret;
}
Do not follow this link