~ruther/uni-mam-arm

ref: 327c9f42f5485a6520d317dc6bd1c8acd240e9bc uni-mam-arm/arm03/src/main.c -rw-r--r-- 6.1 KiB
327c9f42 — Rutherther Init arm01, arm02, arm03 4 months ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include <stdint.h>
#include <stm32f4xx.h>
#include "exti.h"
#include "pin.h"
#include "timer.h"
#include "registers.h"
#include "stm32f401xe.h"

#define LED_PIN 5
#define LED_GPIO GPIOA
#define BUTTON_PIN 13
#define BUTTON_GPIO GPIOC
#define BUTTON_GPIO_ID 2 // A 0 B 1 C 2

void hard_fault_handler() {
  while(1) {}
}

void usage_fault_handler() {
  while(1) {}
}

void nmi_handler() {
  while(1) {}
}

void bus_fault_handler() {
  while(1) {}
}


/*----------------------------------------------------------------------------
 * SystemCoreClockConfigure: configure SystemCoreClock using HSI
                             (HSE is not populated on Nucleo board)
 *----------------------------------------------------------------------------*/
void SystemCoreClockSetHSI(void) {

  RCC->CR |= ((uint32_t)RCC_CR_HSION);                     // Enable HSI
  while ((RCC->CR & RCC_CR_HSIRDY) == 0);                  // Wait for HSI Ready

  RCC->CFGR = RCC_CFGR_SW_HSI;                             // HSI is system clock
  while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI);  // Wait for HSI used as system clock

  FLASH->ACR  = FLASH_ACR_PRFTEN;                          // Enable Prefetch Buffer
  FLASH->ACR |= FLASH_ACR_ICEN;                            // Instruction cache enable
  FLASH->ACR |= FLASH_ACR_DCEN;                            // Data cache enable
  FLASH->ACR |= FLASH_ACR_LATENCY_5WS;                     // Flash 5 wait state

  RCC->CFGR |= RCC_CFGR_HPRE_DIV1;                         // HCLK = SYSCLK
  RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;                        // APB1 = HCLK/4
  RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;                        // APB2 = HCLK/2

  RCC->CR &= ~RCC_CR_PLLON;                                // Disable PLL

  // HSI = 16 MHz
  // PLL configuration:  VCO = HSI/M * N,  Sysclk = VCO/P
  // => Sysclk = 48 MHz, APB1 = 12 MHz, APB2 = 24 MHz
  // Since divider for APB1 is != 1, timer clock is 24 MHz
  RCC->PLLCFGR = ( 16ul                   |                // PLL_M =  16
                 (384ul <<  6)            |                // PLL_N = 384
                 (  3ul << 16)            |                // PLL_P =   8
                 (RCC_PLLCFGR_PLLSRC_HSI) |                // PLL_SRC = HSI
                 (  8ul << 24)             );              // PLL_Q =   8

  RCC->CR |= RCC_CR_PLLON;                                 // Enable PLL
  while((RCC->CR & RCC_CR_PLLRDY) == 0) __NOP();           // Wait till PLL is ready

  RCC->CFGR &= ~RCC_CFGR_SW;                               // Select PLL as system clock source
  RCC->CFGR |=  RCC_CFGR_SW_PLL;
  while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL);  // Wait till PLL is system clock src
}


void main()
{
  SystemCoreClockSetHSI();
  RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOCEN;
  RCC->APB1ENR |= RCC_APB1ENR_TIM2EN | RCC_APB1ENR_TIM3EN;
  RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;

  // Initialize timer for display at interrupt frequency
  //  digit update frequency * digits * 34
  //  aim for 100 Hz * 4 * 34 = 13 600 Hz

  __enable_irq();
  while(1) { __WFI(); }
}

#define CYCLES 17
typedef struct {
  // Display board configuration
  uint16_t digits;
  pin_t pin_data;
  pin_t pin_sftclk;
  pin_t pin_strobe;

  // Current application data
  uint16_t number;
  uint8_t digit_dots;

  // Current application state
  uint8_t digits_en;

  // Current internal state of the display
  uint16_t current_cycle;
  uint32_t current_shifter;
  uint8_t current_digit;
  uint16_t max_value;
} display_t;

typedef enum {
  DISPLAY_UPDATE_NEW_DIGIT,
  DISPLAY_UPDATE_DISPLAY_DIGIT,
  DISPLAY_UPDATE_SHIFT,
} display_update_state_t;

const char numbers_seven_segments[11] = {
  0x3F, /* 0 */
  0x06, /* 1 */
  0x5B, /* 2 */
  0x4F, /* 3 */
  0x66, /* 4 */
  0x6D, /* 5 */
  0x7D, /* 6 */
  0x07, /* 7 */
  0x7F, /* 8 */
  0x6F, /* 9 */
  0x40, /* - */
};

/**
 * @brief Convert a digit from a regular number to seven segments
 * @param[in] number The number to convert
 * @param[in] digit The digit from least significant, starting with 0
 * @return Description
 */
uint16_t seven_segment_convert(uint16_t number, uint16_t digit);

/**
 * @brief Converts a number to serial strem to send via the SIPO register.
 * @param[in] number The number to convert to the values for shift register
 * @param[in] digit The digit from the least significant, starting with 0
 * @return Description
 */
uint16_t convert_num_digit(uint16_t number, uint8_t digit);

void display_number_set(display_t* display, uint16_t number);
void display_number_increment(display_t* display);

void display_enable_digit(display_t* display, uint8_t digit, uint8_t enable);

display_update_state_t display_update(display_t* display);

uint16_t seven_segment_convert(uint16_t number, uint16_t digit) {
  for (int i = 0; i < digit; i++) {
    number /= 10;
  }
  return numbers_seven_segments[number % 10];
}

uint16_t convert_num_digit(uint16_t number, uint8_t digit) {
  uint16_t seven_segments = seven_segment_convert(number, digit);
  uint16_t digits = 1 << digit;

  return (seven_segments << 8) | digits;
}

void display_number_set(display_t *display, uint16_t number) {
  display->number = number;
}

void display_number_increment(display_t *display) {
  display->number = (display->number + 1) % display->max_value;
}

void display_enable_digit(display_t *display, uint8_t digit, uint8_t enable) {
  uint16_t digits = 1 << digit;
  if (enable != 0) {
    display->digits_en |= digits;
  } else {
    display->digits_en &= ~digits;
  }
}

display_update_state_t display_update(display_t *display) {
  display_update_state_t state = DISPLAY_UPDATE_SHIFT;

  if (display->current_cycle == 0) {
    // Set up.
    state = DISPLAY_UPDATE_NEW_DIGIT;
  }

  if (display->current_cycle < CYCLES - 1) {
    pin_write(&display->pin_data,
              reg_read_bits_pos(&display->current_shifter,
                                16 - display->current_cycle,
                                1));

    pin_set(&display->pin_sftclk);
    pin_reset(&display->pin_sftclk);
  } else {
    // Send strobe
    pin_set(&display->pin_strobe);
    pin_reset(&display->pin_strobe);

    state = DISPLAY_UPDATE_DISPLAY_DIGIT;
  }

  display->current_cycle = (display->current_cycle + 1) % CYCLES;

  return state;
}
Do not follow this link