~ruther/qmk_firmware

ed384bd4376398887a95942b7d6750d5bc4833e8 — Jack Humbert 10 years ago 91176d8
beeps update
M keyboard/planck/Makefile => keyboard/planck/Makefile +1 -1
@@ 117,7 117,7 @@ OPT_DEFS += -DBOOTLOADER_SIZE=4096
#   comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes	# Virtual DIP switch configuration(+1000)
# MOUSEKEY_ENABLE = yes	# Mouse keys(+4700)
MOUSEKEY_ENABLE = yes	# Mouse keys(+4700)
EXTRAKEY_ENABLE = yes	# Audio control and System control(+450)
CONSOLE_ENABLE = yes	# Console for debug(+400)
COMMAND_ENABLE = yes    # Commands for debug and configuration

M keyboard/planck/beeps.c => keyboard/planck/beeps.c +123 -81
@@ 5,7 5,6 @@
#include <avr/io.h>

#define PI 3.14159265
#define CHANNEL OCR1C

void delay_us(int count) {
  while(count--) {


@@ 16,91 15,17 @@ void delay_us(int count) {
int voices = 0;
double frequency = 0;
int volume = 0;
int position = 0;

double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};

void beeps() {
 //    DDRB |= (1<<7);
 //    PORTB &= ~(1<<7);
    
 //    // Use full 16-bit resolution. 
 //    ICR1 = 0xFFFF;

 //    // I could write a wall of text here to explain... but TL;DW
 //    // Go read the ATmega32u4 datasheet.
 //    // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
    
 //    // Pin PB7 = OCR1C (Timer 1, Channel C)
 //    // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
 //    // (i.e. start high, go low when counter matches.)
 //    // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
 //    // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
    
 //    TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
 //    TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;


 //    // Turn off PWM control on PB7, revert to output low.
 //    // TCCR1A &= ~(_BV(COM1C1));
 //    // CHANNEL = ((1 << level) - 1);

 //    // Turn on PWM control of PB7
 //    TCCR1A |= _BV(COM1C1);
 //    // CHANNEL = level << OFFSET | 0x0FFF;
 //    // CHANNEL = 0b1010101010101010;

 //    float x = 12;
 //    float y = 24;
 //    float length = 50;
 //    float scale = 1;

 // //    int f1 = 1000000/440;
 // //    int f2 = 1000000/880;
	// // for (uint32_t i = 0; i < length * 1000; i++) {
	// // 	// int frequency = 1/((sin(PI*2*i*scale*pow(2, x/12.0))*.5+1 + sin(PI*2*i*scale*pow(2, y/12.0))*.5+1) / 2); 

	// // 	ICR1 = f1; // Set max to the period
	// // 	OCR1C = f1 >> 1; // Set compare to half the period
 // //     	// _delay_us(10);
	// // }
 //    int frequency = 1000000/440;
	// ICR1 = frequency; // Set max to the period
	// OCR1C = frequency >> 1; // Set compare to half the period
 //    _delay_us(500000);

 //    TCCR1A &= ~(_BV(COM1C1));
 //    CHANNEL = 0;
play_notes();


	// play_note(55*pow(2, 0/12.0), 	1);
	// play_note(55*pow(2, 12/12.0), 	1);
	// play_note(55*pow(2, 24/12.0), 	1);
	// play_note(55*pow(2, 0/12.0), 	1);
	// play_note(55*pow(2, 12/12.0), 	1);
	// play_note(55*pow(2, 24/12.0), 	1);

	// play_note(0, 					4);

	// play_note(55*pow(2, 0/12.0), 	8);
	// play_note(55*pow(2, 12/12.0), 	4);
	// play_note(55*pow(2, 10/12.0), 	4);
	// play_note(55*pow(2, 12/12.0), 	8);
	// play_note(55*pow(2, 10/12.0), 	4);
	// play_note(55*pow(2, 7/12.0), 	2);
	// play_note(55*pow(2, 8/12.0), 	2);
	// play_note(55*pow(2, 7/12.0), 	16);
	// play_note(0, 					4);
	// play_note(55*pow(2, 3/12.0), 	8);
	// play_note(55*pow(2, 5/12.0), 	4);
	// play_note(55*pow(2, 7/12.0), 	4);
	// play_note(55*pow(2, 7/12.0), 	8);
	// play_note(55*pow(2, 5/12.0), 	4);
	// play_note(55*pow(2, 3/12.0), 	4);
	// play_note(55*pow(2, 2/12.0), 	16);
bool sliding = false;
#define RANGE 1000
volatile int i=0; //elements of the wave


void beeps() {
    play_notes();
}

void send_freq(double freq, int vol) {


@@ 114,6 39,7 @@ void stop_all_notes() {
    TCCR3A = 0;
    TCCR3B = 0;
    frequency = 0;
    volume = 0;

    for (int i = 0; i < 8; i++) {
        frequencies[i] = 0;


@@ 135,21 61,28 @@ void stop_note(double freq) {
        }
    }
    voices--;
    if (voices < 0)
        voices = 0;
    if (voices == 0) {
        TCCR3A = 0;
        TCCR3B = 0;
        frequency = 0;
        volume = 0;
    } else {
        double freq = frequencies[voices - 1];
        int vol = volumes[voices - 1];
        if (frequency < freq) {
            sliding = true;
            for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
                send_freq(f, vol);
            }
            sliding = false;
        } else if (frequency > freq) {
            sliding = true;
            for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
                send_freq(f, vol);
            }
            sliding = false;
        }
        send_freq(freq, vol);
        frequency = freq;


@@ 157,6 90,115 @@ void stop_note(double freq) {
    }
}

void init_notes() {
    // TCCR1A = (1 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (1 << WGM10);
    // TCCR1B = (1 << COM1B1) | (0 << COM1A0) | (1 << WGM13) | (1 << WGM12) | (0 << CS12) | (0 << CS11) | (1 << CS10);

    // DDRC |= (1<<6); 

    // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
    // TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30);

    // ICR3 = 0xFFFF; 
    // OCR3A = (int)((float)wave[i]*ICR3/RANGE); //go to next array element


    // cli();

    // /* Enable interrupt on timer2 == 127, with clk/8 prescaler. At 16MHz,
    //    this gives a timer interrupt at 15625Hz. */
    // TIMSK3 = (1 << OCIE3A);

    // /* clear/reset timer on match */
    // // TCCR3A = 1<<WGM31 | 0<<WGM30;  CTC mode, reset on match 
    // // TCCR3B = 0<<CS32 | 1<<CS31 | 0<<CS30; /* clk, /8 prescaler */

    // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
    // TCCR3B = (0 << WGM33) | (0 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30);


    // TCCR1A = (1 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (0 << WGM10);
    // TCCR1B = (1 << WGM12) | (0 << CS12) | (0 << CS11) | (1 << CS10);
    // // SPCR = 0x50;
    // // SPSR = 0x01;
    // DDRC |= (1<<6);
    // // ICR3 = 0xFFFF; 
    // // OCR3A=80;
    // PORTC |= (1<<6);

    // sei();
}

// #define highByte(c) ((c >> 8) & 0x00FF)
// #define lowByte(c) (c & 0x00FF)

ISR(TIMER3_COMPA_vect) {

    if (ICR3 > 0 && !sliding) {
        switch (position) {
            case 0: {
                int duty = (((double)F_CPU) / (frequency));
                ICR3 = duty; // Set max to the period
                OCR3A = duty >> 1; // Set compare to half the period
                break;
            }
            case 1: {
                int duty = (((double)F_CPU) / (frequency*2));
                ICR3 = duty; // Set max to the period
                OCR3A = duty >> 1; // Set compare to half the period
                break;
            }
            case 2: {
                int duty = (((double)F_CPU) / (frequency*3));
                ICR3 = duty; // Set max to the period
                OCR3A = duty >> 1; // Set compare to half the period
                break;
            }
        }
        position = (position + 1) % 3;
    }
//     /* OCR2A has been cleared, per TCCR2A above */
//     // OCR3A = 127;

//     // pos1 += incr1;
//     // pos2 += incr2;
//     // pos3 += incr3;

//     // sample = sinewave[highByte(pos1)] + sinewave[highByte(pos2)] + sinewave[highByte(pos3)];

//     // OCR3A = sample;


//     OCR3A=pgm_read_byte(&sinewave[pos1]);
//     pos1++;
//     // PORTC &= ~(1<<6);

//     /* buffered, 1x gain, active mode */
//     // SPDR = highByte(sample) | 0x70;
//     // while (!(SPSR & (1<<SPIF)));

//     // SPDR = lowByte(sample);
//     // while (!(SPSR & (1<<SPIF)));

//     // PORTC |= (1<<6);
}

void loop() {
}
// ISR(TIMER1_COMPA_vect)
// {
//     // if (i<(sizeof(wave)/sizeof(int))) //don't exceed ends of vector... sizeof(wave)
//     if (i<pow(2, 10)) //don't exceed ends of vector... sizeof(wave)
//     {
//         OCR3A = (int)((float)wave[i]*ICR3/RANGE); //go to next array element
//         // int x = 1;
//         // int y = 5;
//         // OCR3A = (int) (round(sin(i*440*pow(2, x/12.0))*.5+.5 + sin(i*440*pow(2, y/12.0))*.5+.5) / 2 * ICR3); 
//         i++; //increment
//     }
//     else i=0; //reset
// }

void play_note(double freq, int vol) {

    if (freq > 0) {

M keyboard/planck/beeps.h => keyboard/planck/beeps.h +2 -1
@@ 8,4 8,5 @@ void beeps();
void true_note(float x, float y, float length);
void play_note(double freq, int vol);
void stop_note(double freq);
void stop_all_notes();
\ No newline at end of file
void stop_all_notes();
void init_notes();
\ No newline at end of file

M keyboard/planck/keymap_midi.c => keyboard/planck/keymap_midi.c +58 -8
@@ 20,6 20,7 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include <lufa.h>

uint8_t starting_note = 0x0C;
int offset = 7;

void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)
{


@@ 31,28 32,77 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)
	    }
	}

    if (record->event.key.col == (MATRIX_COLS - 1) && record->event.key.row == (MATRIX_ROWS - 1) && record->event.pressed) {
        starting_note++;
    if (record->event.key.col == (MATRIX_COLS - 1) && record->event.key.row == (MATRIX_ROWS - 1)) {
        if (record->event.pressed) {
            starting_note++;
            play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[0 + offset])/12.0+(MATRIX_ROWS - 1)), 0xC);
            midi_send_cc(&midi_device, 0, 0x7B, 0);
            midi_send_cc(&midi_device, 1, 0x7B, 0);
            midi_send_cc(&midi_device, 2, 0x7B, 0);
            midi_send_cc(&midi_device, 3, 0x7B, 0);
            midi_send_cc(&midi_device, 4, 0x7B, 0);
            return;
        } else {
            stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[0 + offset])/12.0+(MATRIX_ROWS - 1)));
            // stop_all_notes();
            return;
        }
    }
    if (record->event.key.col == (MATRIX_COLS - 2) && record->event.key.row == (MATRIX_ROWS - 1)) {
        if (record->event.pressed) {
            starting_note--;
            play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[0 + offset])/12.0+(MATRIX_ROWS - 1)), 0xC);
            midi_send_cc(&midi_device, 0, 0x7B, 0);
            midi_send_cc(&midi_device, 1, 0x7B, 0);
            midi_send_cc(&midi_device, 2, 0x7B, 0);
            midi_send_cc(&midi_device, 3, 0x7B, 0);
            midi_send_cc(&midi_device, 4, 0x7B, 0);
            return;
        } else {
            stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[0 + offset])/12.0+(MATRIX_ROWS - 1)));
            // stop_all_notes();
            return;
        }
    }

    if (record->event.key.col == (MATRIX_COLS - 3) && record->event.key.row == (MATRIX_ROWS - 1) && record->event.pressed) {
        offset++;
        midi_send_cc(&midi_device, 0, 0x7B, 0);
        midi_send_cc(&midi_device, 1, 0x7B, 0);
        midi_send_cc(&midi_device, 2, 0x7B, 0);
        midi_send_cc(&midi_device, 3, 0x7B, 0);
        midi_send_cc(&midi_device, 4, 0x7B, 0);
        // stop_all_notes();
        for (int i = 0; i <= 7; i++) {
            play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[i + offset])/12.0+(MATRIX_ROWS - 1)), 0xC);
            _delay_us(80000);
            stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[i + offset])/12.0+(MATRIX_ROWS - 1)));
            _delay_us(8000);
        }
        return;
    }
    if (record->event.key.col == (MATRIX_COLS - 2) && record->event.key.row == (MATRIX_ROWS - 1) && record->event.pressed) {
        starting_note--;
    if (record->event.key.col == (MATRIX_COLS - 4) && record->event.key.row == (MATRIX_ROWS - 1) && record->event.pressed) {
        offset--;
        midi_send_cc(&midi_device, 0, 0x7B, 0);
        midi_send_cc(&midi_device, 1, 0x7B, 0);
        midi_send_cc(&midi_device, 2, 0x7B, 0);
        midi_send_cc(&midi_device, 3, 0x7B, 0);
        midi_send_cc(&midi_device, 4, 0x7B, 0);
        // stop_all_notes();
        for (int i = 0; i <= 7; i++) {
            play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[i + offset])/12.0+(MATRIX_ROWS - 1)), 0xC);
            _delay_us(80000);
            stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[i + offset])/12.0+(MATRIX_ROWS - 1)));
            _delay_us(8000);
        }
        return;
    }

    if (record->event.pressed) {
    	midi_send_noteon(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
		play_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)), 0xF);
    	// midi_send_noteon(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
        play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF);
    } else {
        midi_send_noteoff(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
        stop_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)));
        // midi_send_noteoff(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
        stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)));
    }
}
\ No newline at end of file

M keyboard/planck/keymap_midi.h => keyboard/planck/keymap_midi.h +5 -1
@@ 23,7 23,11 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.

#define CHNL(note, channel) (note + (channel << 8))

#define SCALE (int []){ 0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31, 33, 35, 36}
#define SCALE (int []){ 0 + (12*0), 2 + (12*0), 4 + (12*0), 5 + (12*0), 7 + (12*0), 9 + (12*0), 11 + (12*0), \
						0 + (12*1), 2 + (12*1), 4 + (12*1), 5 + (12*1), 7 + (12*1), 9 + (12*1), 11 + (12*1), \
						0 + (12*2), 2 + (12*2), 4 + (12*2), 5 + (12*2), 7 + (12*2), 9 + (12*2), 11 + (12*2), \
						0 + (12*3), 2 + (12*3), 4 + (12*3), 5 + (12*3), 7 + (12*3), 9 + (12*3), 11 + (12*3), \
						0 + (12*4), 2 + (12*4), 4 + (12*4), 5 + (12*4), 7 + (12*4), 9 + (12*4), 11 + (12*4), }

#define N_CN1  (0x600C + (12 * -1) + 0 )
#define N_CN1S (0x600C + (12 * -1) + 1 )

M keyboard/planck/keymaps/keymap_lock.c => keyboard/planck/keymaps/keymap_lock.c +1 -1
@@ 40,7 40,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
  { MIDI12 },
  { MIDI12 },
  { MIDI12 },
  {M(0), KC_LCTL, KC_LALT, KC_LGUI, FUNC(2),    KC_SPC,   KC_SPC,    FUNC(1),   MIDI, MIDI, MIDI,  MIDI}
  {M(0), KC_MS_L, KC_MS_D, KC_MS_U, KC_MS_R,    KC_SPC,   KC_SPC,    FUNC(1),   MIDI, MIDI, MIDI,  MIDI}
}
};


M protocol/lufa/lufa.c => protocol/lufa/lufa.c +7 -6
@@ 829,6 829,7 @@ int main(void)
    midi_register_cc_callback(&midi_device, cc_callback);
    midi_register_sysex_callback(&midi_device, sysex_callback);

    init_notes();
    // midi_send_cc(&midi_device, 0, 1, 2);
    // midi_send_cc(&midi_device, 15, 1, 0);
    // midi_send_noteon(&midi_device, 0, 64, 127);


@@ 837,13 838,13 @@ int main(void)


    /* wait for USB startup & debug output */
    while (USB_DeviceState != DEVICE_STATE_Configured) {
#if defined(INTERRUPT_CONTROL_ENDPOINT)
        ;
#else
    // while (USB_DeviceState != DEVICE_STATE_Configured) {
// #if defined(INTERRUPT_CONTROL_ENDPOINT)
        // ;
// #else
        USB_USBTask();
#endif
    }
// #endif
    // }
    print("USB configured.\n");

    /* init modules */