~ruther/qmk_firmware

91176d854b8c9e49e88d494ba02c8e9c54fec914 — Jack Humbert 10 years ago d63c2e3
speaker working, midi out
M keyboard/planck/Makefile => keyboard/planck/Makefile +2 -1
@@ 52,7 52,8 @@ TARGET_DIR = .
SRC = keymap_common.c \
	matrix.c \
	led.c \
	backlight.c
	backlight.c \
	beeps.c

ifdef KEYMAP
    SRC := keymaps/keymap_$(KEYMAP).c $(SRC)

M keyboard/planck/beeps.c => keyboard/planck/beeps.c +93 -111
@@ 7,36 7,19 @@
#define PI 3.14159265
#define CHANNEL OCR1C

volatile uint16_t sample;
uint16_t lastSample;

const int sounddata_length=200;

const unsigned char sounddata_data[] PROGMEM = {128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 129, 127, 129, 128, 127, 133, 
117, 109, 125, 121, 116, 132, 140, 126, 114, 114, 116, 120, 114, 93, 73, 66, 76, 116, 142, 129, 
128, 129, 120, 119, 118, 104, 87, 123, 181, 194, 196, 198, 189, 176, 160, 162, 172, 164, 164, 183, 
197, 188, 168, 167, 170, 165, 185, 209, 206, 196, 196, 199, 185, 162, 156, 167, 176, 173, 170, 166, 
151, 142, 140, 134, 130, 127, 113, 86, 67, 66, 69, 75, 73, 75, 86, 90, 91, 84, 65, 48, 
41, 30, 26, 56, 91, 88, 72, 70, 73, 82, 89, 73, 57, 60, 74, 89, 92, 77, 63, 60, 
53, 47, 56, 64, 63, 61, 56, 54, 52, 36, 16, 22, 51, 66, 67, 70, 76, 88, 99, 92, 
77, 74, 85, 100, 106, 97, 83, 85, 96, 108, 133, 160, 164};

void delay_us(int count) {
  while(count--) {
    _delay_us(1);
  }
}

int voices = 0;
double frequency = 0;
int volume = 0;

double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};

void beeps() {
 //    DDRB |= (1<<7);
 //    PORTB &= ~(1<<7);


@@ 120,119 103,118 @@ play_notes();

}

void play_note(float freq, int length) {
    DDRB |= (1<<7);
    PORTB &= ~(1<<7);
void send_freq(double freq, int vol) {
    int duty = (((double)F_CPU) / freq);
    ICR3 = duty; // Set max to the period
    OCR3A = duty >> (0x10 - vol); // Set compare to half the period
}

    if (freq > 0) {
	    int frequency = 1000000/freq;
		ICR1 = frequency; // Set max to the period
		OCR1C = frequency >> 1; // Set compare to half the period
void stop_all_notes() {
    voices = 0;
    TCCR3A = 0;
    TCCR3B = 0;
    frequency = 0;

	    TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
	    TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
    for (int i = 0; i < 8; i++) {
        frequencies[i] = 0;
        volumes[i] = 0;
    }

	for (int i = 0; i < length; i++) {
	    _delay_us(50000);
	}

    TCCR1A &= ~(_BV(COM1C1));
}

// This is called at 8000 Hz to load the next sample.
ISR(TIMER1_COMPA_vect) {
    if (sample >= sounddata_length) {
        if (sample == sounddata_length + lastSample) {
            TIMSK1 &= ~_BV(OCIE1A);

			// Disable the per-sample timer completely.
   			 TCCR1B &= ~_BV(CS10);
        }
        else {
            OCR1C = sounddata_length + lastSample - sample;                
void stop_note(double freq) {
    for (int i = 7; i >= 0; i--) {
        if (frequencies[i] == freq) {
            frequencies[i] = 0;
            volumes[i] = 0;
            for (int j = i; (j < 7); j++) {
                frequencies[j] = frequencies[j+1];
                frequencies[j+1] = 0;
                volumes[j] = volumes[j+1];
                volumes[j+1] = 0;
            }
        }
    }
    else {
        OCR1C = pgm_read_byte(&sounddata_data[sample]);            
    voices--;
    if (voices == 0) {
        TCCR3A = 0;
        TCCR3B = 0;
        frequency = 0;
    } else {
        double freq = frequencies[voices - 1];
        int vol = volumes[voices - 1];
        if (frequency < freq) {
            for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
                send_freq(f, vol);
            }
        } else if (frequency > freq) {
            for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
                send_freq(f, vol);
            }
        }
        send_freq(freq, vol);
        frequency = freq;
        volume = vol;
    }

    ++sample;
}

void play_notes() {


    // Set up Timer 2 to do pulse width modulation on the speaker
    // pin.

    DDRB |= (1<<7);
    PORTB &= ~(1<<7);
void play_note(double freq, int vol) {

    // Use internal clock (datasheet p.160)
    // ASSR &= ~(_BV(EXCLK) | _BV(AS2));

    // Set fast PWM mode  (p.157)
    TCCR1A |= _BV(WGM21) | _BV(WGM20);
    TCCR1B &= ~_BV(WGM22);

    // Do non-inverting PWM on pin OC2A (p.155)
    // On the Arduino this is pin 11.
    TCCR1A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
    TCCR1A &= ~(_BV(COM2B1) | _BV(COM2B0));
    // No prescaler (p.158)
    TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

    // Set initial pulse width to the first sample.
    OCR1A = pgm_read_byte(&sounddata_data[0]);




	cli();

    // Set CTC mode (Clear Timer on Compare Match) (p.133)
    // Have to set OCR1A *after*, otherwise it gets reset to 0!
    TCCR2B = (TCCR2B & ~_BV(WGM13)) | _BV(WGM12);
    TCCR2A = TCCR2A & ~(_BV(WGM11) | _BV(WGM10));

    // No prescaler (p.134)
    TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

    // Set the compare register (OCR1A).
    // OCR1A is a 16-bit register, so we have to do this with
    // interrupts disabled to be safe.
    // OCR2A = F_CPU / SAMPLE_RATE;    // 16e6 / 8000 = 2000
    OCR2A = 2000;

    // Enable interrupt when TCNT1 == OCR1A (p.136)
    TIMSK1 |= _BV(OCIE2A);
    if (freq > 0) {
        DDRC |= (1<<6); 

        TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
        TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);

        if (frequency != 0) {
            if (frequency < freq) {
                for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
                    send_freq(f, vol);
                }
            } else if (frequency > freq) {
                for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
                    send_freq(f, vol);
                }
            }
        }
        send_freq(freq, vol);
        frequency = freq;
        volume = vol;

    sample = 0;
    sei();
        frequencies[voices] = frequency;
        volumes[voices] = volume;
        voices++;
    }
    // ICR3 = 0xFFFF;
    // for (int i = 0; i < 10000; i++) {
    //     OCR3A = round((sin(i*freq)*.5)+.5)*0xFFFF;
    //     // _delay_us(50);
    // }

    // TCCR3A = 0;
    // TCCR3B = 0;
}

void note(int x, float length) {
    DDRB |= (1<<1);
    DDRC |= (1<<6);
	int t = (int)(440*pow(2,-x/12.0)); // starting note
    for (int y = 0; y < length*1000/t; y++) { // note length
        PORTB |= (1<<1);
        PORTC |= (1<<6);
        delay_us(t);
        PORTB &= ~(1<<1);
        PORTC &= ~(1<<6);
        delay_us(t);
    }
	PORTB &= ~(1<<1);
	PORTC &= ~(1<<6);
}

void true_note(float x, float y, float length) {
	for (uint32_t i = 0; i < length * 50; i++) {
		uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8)); 
		for (int u = 0; u < 8; u++) {
			if (v & (1 << u) && !(PORTB&(1<<1)))
		        PORTB |= (1<<1);
		    else if (PORTB&(1<<1))
	        	PORTB &= ~(1<<1);
			if (v & (1 << u) && !(PORTC&(1<<6)))
		        PORTC |= (1<<6);
		    else if (PORTC&(1<<6))
	        	PORTC &= ~(1<<6);
		}
	}
	PORTB &= ~(1<<1);
	PORTC &= ~(1<<6);
}
\ No newline at end of file

M keyboard/planck/beeps.h => keyboard/planck/beeps.h +3 -1
@@ 6,4 6,6 @@
void note(int x, float length);
void beeps();
void true_note(float x, float y, float length);
void play_note(float freq, int length);
\ No newline at end of file
void play_note(double freq, int vol);
void stop_note(double freq);
void stop_all_notes();
\ No newline at end of file

M keyboard/planck/config.h => keyboard/planck/config.h +3 -3
@@ 22,7 22,7 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.

/* USB Device descriptor parameter */
#define VENDOR_ID       0xFEED
#define PRODUCT_ID      0x6061
#define PRODUCT_ID      0x6060
#define DEVICE_VER      0x0001
#define MANUFACTURER    Ortholinear Keyboards
#define PRODUCT         The Planck Keyboard


@@ 61,10 61,10 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/* disable debug print */
// #define NO_DEBUG
#define NO_DEBUG

/* disable print */
// #define NO_PRINT
#define NO_PRINT

/* disable action features */
//#define NO_ACTION_LAYER

M keyboard/planck/keymap_midi.c => keyboard/planck/keymap_midi.c +2 -0
@@ 50,7 50,9 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)

    if (record->event.pressed) {
    	midi_send_noteon(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
		play_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)), 0xF);
    } else {
        midi_send_noteoff(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
        stop_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)));
    }
}
\ No newline at end of file

M keyboard/planck/keymaps/keymap_lock.c => keyboard/planck/keymaps/keymap_lock.c +8 -0
@@ 2,6 2,7 @@
#include "backlight.h"
#include "action_layer.h"
#include "keymap_midi.h"
#include "beeps.h"

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = { /* Qwerty */


@@ 58,15 59,22 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
      switch(id) {
        case 0:   
        if (record->event.pressed) {
          // play_note(440, 20);
          // register_code(KC_RSFT);
          backlight_set(BACKLIGHT_LEVELS);
          default_layer_and(0); 
          default_layer_or((1<<5));
          // note(0+12, 20);
          // note(0+24, 20);
        } else {
          // unregister_code(KC_RSFT);
          // stop_note();
          backlight_set(0);
          default_layer_and(0); 
          default_layer_or(0);
          // note(0+24, 20);
          // note(0, 20);
          // play_note(4, 20);
        }
        break;
      } 

M protocol/lufa/lufa.c => protocol/lufa/lufa.c +14 -3
@@ 51,6 51,7 @@

#include "descriptor.h"
#include "lufa.h"
#include <beeps.h>

// #include <LUFA/Version.h>
// #include <LUFA/Drivers/USB/USB.h>


@@ 877,11 878,21 @@ int main(void)
}

#ifdef MIDI_ENABLE
//echo data back
void fallthrough_callback(MidiDevice * device,
    uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2){
  //pass the data back to the device, using the general purpose send data
  //function, any bytes after cnt are ignored
  if (cnt == 3) {
    switch (byte0 & 0xF0) {
        case MIDI_NOTEON:
            play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(byte1 & 0x7F)/12.0), (byte2 & 0x7F) / 8);
            break;
        case MIDI_NOTEOFF:
            stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(byte1 & 0x7F)/12.0));
            break;
    }
  }
  if (byte0 == MIDI_STOP) {
    stop_all_notes();
  }
}

void cc_callback(MidiDevice * device,