library ieee;
use ieee.std_logic_1164.all;
use work.data_link_pkg.all;
use work.transport_pkg.all;
entity octets_to_samples is
generic (
CS : integer := 1; -- Number of control bits per sample
M : integer := 1; -- Number of converters
S : integer := 1; -- Number of samples
L : integer := 1; -- Number of lanes
F : integer := 16; -- Number of octets in a frame
CF : integer := 1; -- Number of control words
N : integer := 12; -- Size of a sample
Nn : integer := 32); -- Size of a word (sample + ctrl if CF
-- =0
port (
ci_char_clk : in std_logic;
ci_frame_clk : in std_logic;
ci_reset : in std_logic;
di_lanes_data : in frame_character_array(0 to L-1);
-- bits
co_correct_data : out std_logic;
do_samples_data : out samples_array(0 to M - 1, 0 to S - 1));
end entity octets_to_samples;
architecture a1 of octets_to_samples is
constant CF_GROUP_COUNT : integer := CF;
constant CF_GROUP_LANES_COUNT : integer := L/CF;
constant CF_GROUP_CONVERTERS_COUNT : integer := M/CF;
signal samples_data : samples_array
(M - 1 downto 0, S - 1 downto 0)
(data(N - 1 downto 0), ctrl_bits(CS - 1 downto 0));
signal prev_samples_data : samples_array
(M - 1 downto 0, S - 1 downto 0)
(data(N - 1 downto 0), ctrl_bits(CS - 1 downto 0));
signal reg_all_user_data : std_logic; -- if '0', set correct_data to '0'.
signal reg_error : std_logic; -- if err, repeat last samples.
signal new_frame : std_logic; -- Whether current frame is new frame
signal reg_buffered_data : std_logic_vector(L*F-1 downto 0) := (others => '0');
begin -- architecture a
set_data: process (ci_char_clk, ci_reset) is
begin -- process set_data
if ci_reset = '0' then -- asynchronous reset (active low)
co_correct_data <= '0';
reg_all_user_data <= '1';
reg_error <= '0';
reg_buffered_data <= (others => '0');
elsif ci_char_clk'event and ci_char_clk = '1' then -- rising clock edge
if new_frame = '1' then
if reg_error = '1' then
do_samples_data <= prev_samples_data;
else
do_samples_data <= samples_data;
prev_samples_data <= samples_data;
end if;
reg_buffered_data <= (others => '0');
co_correct_data <= reg_all_user_data;
reg_all_user_data <= '1';
reg_error <= '0';
end if;
for i in 0 to L-1 loop
reg_buffered_data(L*F - 1 - i*F - 8*di_lanes_data(i).octet_index downto L*F - 1 - i*F - 8*di_lanes_data(i).octet_index - 7) <= di_lanes_data(i).d8b;
if di_lanes_data(i).user_data = '0' or di_lanes_data(i).disparity_error = '1' or di_lanes_data(i).missing_error = '1' then
reg_all_user_data <= '0';
end if;
end loop; -- i
end if;
end process set_data;
new_frame <= '1' when di_lanes_data(0).octet_index = 0 else '0';
last_octet_data: for i in 0 to L-1 generate
reg_buffered_data(L*F - 1 - i*F - (F - 1)*8 downto L*F - 1 - i*F - (F - 1)*8 - 7) <= di_lanes_data(L - 1).d8b;
end generate last_octet_data;
multi_lane_no_cf: if CF = 0 generate
converters: for ci in 0 to M - 1 generate
samples: for si in 0 to S - 1 generate
samples_data(ci, si).data <= reg_buffered_data(L*F - 1 - ci*Nn*S - si*Nn downto L*F - 1 - ci*Nn*S - si*Nn - N + 1);
control_bits: if CS > 0 generate
samples_data(ci, si).ctrl_bits <= reg_buffered_data(L*F - 1 - ci*Nn*S - si*Nn - si*N downto L*F - 1 - ci*Nn*S - si*Nn - si*N - CS + 1);
end generate control_bits;
end generate samples;
end generate converters;
end generate multi_lane_no_cf;
multi_lane_cf: if CF > 0 generate
cf_groups: for cfi in 0 to CF_GROUP_COUNT-1 generate
converters: for ci in 0 to CF_GROUP_CONVERTERS_COUNT-1 generate
samples: for si in 0 to S - 1 generate
samples_data(ci + cfi*CF_GROUP_CONVERTERS_COUNT, si).data <= reg_buffered_data(L*F - 1 - F*CF_GROUP_LANES_COUNT - ci*Nn*S - si*Nn downto L*F - 1 - F*CF_GROUP_LANES_COUNT - ci*Nn*S - si*Nn - N + 1);
control_bits: if CS > 0 generate
samples_data(ci + cfi*CF_GROUP_CONVERTERS_COUNT, si).ctrl_bits <= reg_buffered_data(L*F - 1 - F*CF_GROUP_LANES_COUNT - (M-1)*Nn*S - ci*S*CS - si*CS downto L*F - 1 - F*CF_GROUP_LANES_COUNT - (M-1)*Nn*S - ci*S*CS - si*CS - CS + 1);
end generate control_bits;
end generate samples;
end generate converters;
end generate cf_groups;
end generate multi_lane_cf;
end architecture a1;