~ruther/ctu-fee-eoa

ref: f1a6bbdb829d78985c738ddd16184fde2690ccff ctu-fee-eoa/codes/eoa_lib/src/evolution.rs -rw-r--r-- 11.7 KiB
f1a6bbdb — Rutherther fix: use two objectives in nsga_constr 6 days ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use std::error::Error;
use rand::RngCore;

use crate::{comparison::BetterThanOperator, crossover::Crossover, fitness::FitnessFunction, pairing::Pairing, perturbation::PerturbationOperator, population::{EvaluatedChromosome, EvaluatedPopulation, Population}, replacement::Replacement, selection::Selection};

#[derive(Clone, Debug)]
pub struct EvolutionCandidate<TInput, TResult> {
    pub evaluated_chromosome: EvaluatedChromosome<TInput, TResult>,
    pub evaluation: usize,
    pub iteration: usize
}

#[derive(Clone, Debug)]
pub struct EvolutionCandidatePopulation<TInput, TResult> {
    pub current_population: EvaluatedPopulation<TInput, TResult>,
    pub iteration: usize
}

#[derive(Clone, Debug)]
pub struct EvolutionStats<TInput, TResult> {
    pub best_candidates: Vec<EvolutionCandidate<TInput, TResult>>,
}

#[derive(Clone, Debug)]
pub struct EvolutionResult<TInput, TResult> {
    pub population: EvaluatedPopulation<TInput, TResult>,
    pub stats: EvolutionStats<TInput, TResult>,
    pub best_candidate: Option<EvaluatedChromosome<TInput, TResult>>,
    pub iterations: usize,
    pub evaluations: usize
}

impl<TInput, TResult> EvolutionResult<TInput, TResult> {
    pub fn map<TNewResult>(self, map: impl Fn(TResult) -> TNewResult) -> EvolutionResult<TInput, TNewResult> {
        EvolutionResult {
            population: EvaluatedPopulation::from_vec(
                self.population.deconstruct()
                    .into_iter()
                    .map(|chromosome| EvaluatedChromosome {
                        chromosome: chromosome.chromosome,
                        evaluation: map(chromosome.evaluation)
                    })
                    .collect()
            ),
            stats: EvolutionStats {
                best_candidates: self.stats.best_candidates
                    .into_iter()
                    .map(|candidate|
                         EvolutionCandidate {
                             evaluated_chromosome: EvaluatedChromosome {
                                 chromosome: candidate.evaluated_chromosome.chromosome,
                                 evaluation: map(candidate.evaluated_chromosome.evaluation)
                             },
                             evaluation: candidate.evaluation,
                             iteration: candidate.iteration
                         })
                    .collect()
            },
            best_candidate: self.best_candidate.map(
                |best_candidate|
                EvaluatedChromosome {
                    chromosome: best_candidate.chromosome,
                    evaluation: map(best_candidate.evaluation)
                }),
            evaluations: self.evaluations,
            iterations: self.iterations,
        }
    }
}

pub fn evolution_algorithm
    <TChromosome: Clone,
     TResult: Clone,
     const DParents: usize,
     TSelection: Selection<TChromosome, TResult>,
     TFitness: FitnessFunction<In = TChromosome, Out = TResult>,
     TPairing: Pairing<DParents, Chromosome = TChromosome, Out = TResult>,
     TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = TResult>,
     TReplacement: Replacement<TChromosome, TResult>,
     TPerturbation: PerturbationOperator<Chromosome = TChromosome>>(
    initial_population: Population<TChromosome>,
    parents_count: usize,
    fitness: &mut TFitness,
    selection: &mut TSelection,
    pairing: &mut TPairing,
    crossover: &mut TCrossover,
    perturbation: &mut TPerturbation,
    replacement: &mut TReplacement,
    better_than: &impl BetterThanOperator<TResult>,
    // TODO: termination condition
    iterations: usize,
    rng: &mut dyn RngCore,
    evolutionary_strategy: impl FnMut(
        usize,
        &EvolutionStats<TChromosome, TResult>,
        &EvaluatedPopulation<TChromosome, TResult>,

        &mut TFitness,
        &mut TSelection,
        &mut TPairing,
        &mut TCrossover,
        &mut TPerturbation,
        &mut TReplacement
    )
) -> Result<EvolutionResult<TChromosome, TResult>, Box<dyn Error>> {
        evolution_algorithm_best_candidate(
            initial_population,
            parents_count,
            fitness,
            selection,
            pairing,
            crossover,
            perturbation,
            replacement,
            better_than,
            iterations,
            rng,
            evolutionary_strategy,
            |_, evaluation, last_best_candidate| last_best_candidate.is_none() ||
                better_than.better_than(
                    evaluation,
                    &last_best_candidate.as_ref().unwrap().evaluated_chromosome.evaluation
                ))
}

pub fn evolution_algorithm_best_candidate
    <TChromosome: Clone,
     TResult: Clone,
     const DParents: usize,
     TSelection: Selection<TChromosome, TResult>,
     TFitness: FitnessFunction<In = TChromosome, Out = TResult>,
     TPairing: Pairing<DParents, Chromosome = TChromosome, Out = TResult>,
     TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = TResult>,
     TReplacement: Replacement<TChromosome, TResult>,
     TPerturbation: PerturbationOperator<Chromosome = TChromosome>>(
    initial_population: Population<TChromosome>,
    parents_count: usize,
    fitness: &mut TFitness,
    selection: &mut TSelection,
    pairing: &mut TPairing,
    crossover: &mut TCrossover,
    perturbation: &mut TPerturbation,
    replacement: &mut TReplacement,
    better_than: &impl BetterThanOperator<TResult>,
    // TODO: termination condition
    iterations: usize,
    rng: &mut dyn RngCore,
    mut evolutionary_strategy: impl FnMut(
        usize,
        &EvolutionStats<TChromosome, TResult>,
        &EvaluatedPopulation<TChromosome, TResult>,

        &mut TFitness,
        &mut TSelection,
        &mut TPairing,
        &mut TCrossover,
        &mut TPerturbation,
        &mut TReplacement
    ),
    // For the statistics, evaluate if a candidate is better. Potential for different functrion than better_than that's used
    // for the replacement, selection etc.
    better_than_stats: impl Fn(&TChromosome, &TResult, &Option<EvolutionCandidate<TChromosome, TResult>>) -> bool,
) -> Result<EvolutionResult<TChromosome, TResult>, Box<dyn Error>> {
    let mut current_evaluation = 0;

    let mut last_best_candidate: Option<EvolutionCandidate<TChromosome, TResult>> = None;
    let mut stats: EvolutionStats<TChromosome, TResult> = EvolutionStats {
        best_candidates: vec![]
    };

    fn apply_new_eval<TChromosome: Clone, TResult: Clone>(
        current_evaluation: &mut usize,
        current_iteration: &usize,
        stats: &mut EvolutionStats<TChromosome, TResult>,
        population: &EvaluatedPopulation<TChromosome, TResult>,
        last_best_candidate: &mut Option<EvolutionCandidate<TChromosome, TResult>>,
        better_than_stats: &impl Fn(&TChromosome, &TResult, &Option<EvolutionCandidate<TChromosome, TResult>>) -> bool,
    ) {
        for individual in population.iter() {
            let evaluation = &individual.evaluation;
            let chromosome = &individual.chromosome;

            if better_than_stats(chromosome, evaluation, last_best_candidate) {
                    let previous_best = std::mem::replace(
                        last_best_candidate,
                        Some(EvolutionCandidate {
                            evaluated_chromosome: EvaluatedChromosome {
                                chromosome: chromosome.clone(),
                                evaluation: evaluation.clone(),
                            },
                            evaluation: *current_evaluation,
                            iteration: *current_iteration
                        }));

                    if let Some(previous_best) = previous_best {
                        stats.best_candidates.push(previous_best);
                    }
                }
            *current_evaluation += 1;
        }
    }

    let mut current_population =
        initial_population.evaluate(fitness)?;
    apply_new_eval(
        &mut current_evaluation,
        &0,
        &mut stats,
        &current_population,
        &mut last_best_candidate,
        &better_than_stats);

    for iteration in 1..=iterations {
        // Selection
        let parents = selection.select(parents_count, &current_population, better_than, rng).collect::<Vec<_>>();
        let parent_pairings = pairing.pair(&current_population, parents.into_iter());

        // Crossover
        let mut offsprings = crossover.crossover(&current_population, parent_pairings, rng);

        // Mutation
        for offspring in offsprings.iter_mut() {
            perturbation.perturb(offspring, rng);
        }

        let evaluated_offsprings =
            offsprings.evaluate(fitness)?;
        apply_new_eval(
            &mut current_evaluation,
            &iteration,
            &mut stats,
            &current_population,
            &mut last_best_candidate,
            &better_than_stats
        );

        // Replace
        current_population = replacement.replace(current_population, evaluated_offsprings, better_than, rng);

        evolutionary_strategy(
            iteration,
            &stats,
            &current_population,
            fitness,
            selection,
            pairing,
            crossover,
            perturbation,
            replacement
        );
    }

    let best_candidate = last_best_candidate.as_ref().map(|x| x.evaluated_chromosome.clone());
    if last_best_candidate.is_some() {
        stats.best_candidates.push(last_best_candidate.unwrap());
    }

    Ok(EvolutionResult {
        population: current_population,
        best_candidate,
        stats,
        iterations,
        evaluations: current_evaluation
    })
}

#[cfg(test)]
pub mod tests {
    use nalgebra::Const;

    use crate::{binary_string::BinaryString, comparison::MinimizingOperator, crossover::BinaryOnePointCrossover, fitness::one_max::OneMax, initializer::{Initializer, RandomInitializer}, pairing::AdjacentPairing, perturbation::{BinaryStringBitPerturbation, BinaryStringFlipPerturbation, BinaryStringSingleBitPerturbation, CombinedPerturbation, MutationPerturbation}, population::Population, replacement::{BestReplacement, TournamentReplacement}, selection::TournamentSelection};

    use super::evolution_algorithm;

    #[test]
    pub fn test_evolution_one_max() {
        const D: usize = 512;
        let optimum = BinaryString::<Const<D>>::new(vec![0; D]);
        let mut one_max = OneMax::<Const<D>>::new();

        let initializer = RandomInitializer::<Const<D>, BinaryString::<Const<D>>>::new_binary();
        let population_size = 10;

        let mut rng_init = rand::rng();
        let population = Population::from_vec(
            initializer.initialize(Const::<D>, population_size, &mut rng_init)
        );

        let mut rng = rand::rng();
        let result = evolution_algorithm(
            population,
            50,
            &mut one_max,
            &mut TournamentSelection::new(5, 0.8),
            &mut AdjacentPairing::new(),
            &mut BinaryOnePointCrossover::new(),
            &mut CombinedPerturbation::new(
                vec![
                    Box::new(MutationPerturbation::new(
                        Box::new(BinaryStringSingleBitPerturbation::new()),
                        0.3)),
                    Box::new(MutationPerturbation::new(
                        Box::new(BinaryStringFlipPerturbation::new()),
                        0.3))
                ]
            ),
            &mut BestReplacement::new(),
            &MinimizingOperator,
            1000,
            &mut rng,
            |_, _, _, _, _, _, _, _, _| ()
        ).unwrap();

        assert_eq!(
            result.best_candidate.evaluation,
            0
        );

        assert_eq!(
            result.best_candidate.chromosome,
            optimum
        );

    }
}