~ruther/ctu-fee-eoa

ref: ee1d949d7c480ce8acaadad324223b4f1b2bf54c ctu-fee-eoa/codes/tsp_hw01/src/binary_string_representation.rs -rw-r--r-- 7.8 KiB
ee1d949d — Rutherther feat: add number of constraints as a generic 25 days ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
use nalgebra::{allocator::Allocator, DefaultAllocator, Dim, OVector, U1};
use eoa_lib::{binary_string::BinaryString, fitness::FitnessFunction};
use thiserror::Error;
use crate::tsp::{NodePermutation, TSPInstance};
use eoa_lib::population::EvaluatedChromosome;

impl<'a, DIn: Dim, DOut: Dim> FitnessFunction for TSPBinaryStringWrapper<'a, DIn, DOut>
where
    DefaultAllocator: Allocator<DIn>,
    DefaultAllocator: Allocator<DOut>,
    DefaultAllocator: Allocator<DOut, DOut>,
{
    type In = BinaryString<DIn>;
    type Out = f64;
    type Err = DimensionMismatch;

    fn fit(self: &Self, inp: &Self::In) -> Result<Self::Out, Self::Err> {
        Ok(self.instance.fit(&self.to_permutation(inp)?).unwrap())
    }

    fn fit_population(&self, inp: Vec<Self::In>) -> Result<Vec<EvaluatedChromosome<Self::In, Self::Out>>, Self::Err> {
        let nodes = self.dim_out.value();

        // Count how many nodes each node comes after (precedence count)
        let mut precedence_count = OVector::<usize, DOut>::zeros_generic(self.dim_out, U1);

        let result = OVector::from_iterator_generic(
            self.dim_out,
            U1,
            0..nodes
        );

        let mut permutation = NodePermutation { permutation: result };

        inp
            .into_iter()
            .map(|chromosome| {
                // Reset
                precedence_count
                    .apply(|c| *c = 0);

                // NOTE no need to reset the permutation
                // as it's always sorted

                self.to_permutation_buff(
                    &chromosome,
                    &mut permutation,
                    &mut precedence_count
                )?;

                Ok(EvaluatedChromosome {
                    evaluation: self.instance.fit(&permutation).unwrap(),
                    chromosome,
                })
            })
            .collect::<Result<Vec<_>, _>>()
    }
}

pub struct TSPBinaryStringWrapper<'a, DIn: Dim, DOut: Dim>
where
    DOut: Dim,
    DefaultAllocator: Allocator<DOut, DOut>
{
    instance: &'a TSPInstance<DOut>,
    dim_in: DIn,
    dim_out: DOut,
}

impl<'a, DIn: Dim, DOut: Dim> TSPBinaryStringWrapper<'a, DIn, DOut>
where
    DOut: Dim,
    DefaultAllocator: Allocator<DOut, DOut>,
    DefaultAllocator: Allocator<DIn>,
    DefaultAllocator: Allocator<DOut>,
{
    pub fn new(
        instance: &'a TSPInstance<DOut>,
        dim_in: DIn,
        dim_out: DOut
    ) -> Result<Self, DimensionMismatch> {
        let res = Self {
            instance,
            dim_in,
            dim_out
        };

        if dim_out.value() * (dim_out.value() - 1) / 2 != dim_in.value() {
            Err(DimensionMismatch::Mismatch)
        } else {
            Ok(res)
        }
    }

    pub fn to_permutation_buff(
        &self,
        inp: &BinaryString<DIn>,
        permutation: &mut NodePermutation<DOut>,
        precedence_count: &mut OVector<usize, DOut>
    ) -> Result<(), DimensionMismatch> {
        let nodes = self.dim_out.value();

        if inp.vec().shape_generic().0.value() != self.dim_in.value() {
            return Err(DimensionMismatch::Mismatch);
        }

        let mut in_index = 0usize;
        for i in 0..self.dim_out.value() {
            for j in i+1..nodes {
                if in_index >= inp.vec.len() {
                    return Err(DimensionMismatch::Mismatch);
                }

                if inp.vec[in_index] == 1 {
                    // i comes before j, so j has one more predecessor
                    precedence_count[j] += 1;
                } else {
                    // j comes before i, so i has one more predecessor
                    precedence_count[i] += 1;
                }

                in_index += 1;
            }
        }

        if in_index != inp.vec.len() {
            return Err(DimensionMismatch::Mismatch);
        }

        permutation.permutation
            .as_mut_slice()
            .sort_unstable_by_key(|&node| precedence_count[node]);

        Ok(())
    }

    pub fn to_permutation(&self, inp: &BinaryString<DIn>) -> Result<NodePermutation<DOut>, DimensionMismatch> {
        let nodes = self.dim_out.value();

        // Count how many nodes each node comes after (precedence count)
        let mut precedence_count = OVector::<usize, DOut>::zeros_generic(self.dim_out, U1);

        let mut result = OVector::from_iterator_generic(
            self.dim_out,
            U1,
            0..nodes
        );

        let mut permutation = NodePermutation { permutation: result };

        self.to_permutation_buff(inp, &mut permutation, &mut precedence_count)?;

        Ok(permutation)
    }
}

#[derive(Error, Debug)]
pub enum DimensionMismatch {
    #[error("The input dimension should be equal to half matrix NxN where the output is N")]
    Mismatch
}

#[cfg(test)]
mod tests {
    use super::*;
    use nalgebra::{Const, SVector, U15, U6};
    use eoa_lib::binary_string::BinaryString;

    #[test]
    fn test_binary_string_representation() {
        // x 0 1 2 3 4 5
        // 0 0 0 0 0 0 0
        // 1 1 0 0 0 0 0
        // 2 1 1 0 0 0 0
        // 3 1 1 1 0 0 0
        // 4 1 1 1 1 0 0
        // 5 1 1 1 1 1 0

        // x 0 1 2 3 4 5
        // 0   0 0 0 0 0
        // 1     0 0 0 0
        // 2       0 0 0
        // 3         0 0
        // 4           0
        // 5

        // 6 nodes
        // length of binary string: 5 + 4 + 3 + 2 + 1 = 15

        let tsp = TSPInstance::new_const(
            vec![
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
            ]
        );
        let converter = TSPBinaryStringWrapper::new(
            &tsp,
            U15,
            U6
        ).unwrap();

        let binary_string_ordering = BinaryString::<U15>::new(vec![1; 15]);

        let mut expected_permutation = vec![0, 1, 2, 3, 4, 5];

        let mut permutation = converter.to_permutation(&binary_string_ordering)
            .unwrap();

        assert_eq!(
            expected_permutation,
            permutation.permutation.as_mut_slice().to_vec()
        );

        let binary_string_ordering = BinaryString::<U15>::new(vec![0; 15]);
        expected_permutation.reverse();

        let mut permutation = converter.to_permutation(&binary_string_ordering)
            .unwrap();

        assert_eq!(
            expected_permutation,
            permutation.permutation.as_mut_slice().to_vec()
        )
    }

    #[test]
    fn test_nontrivial_binary_string_representation() {
        // x 0 1 2 3 4 5
        // 0 0 1 0 0 0 0
        // 1 0 0 0 0 0 0
        // 2 1 1 0 0 0 1
        // 3 1 1 1 0 0 0
        // 4 1 1 1 1 0 0
        // 5 1 1 0 1 1 0

        // x 0 1 2 3 4 5
        // 0   0 0 0 0 0
        // 1     0 0 0 0
        // 2       1 1 1
        // 3         0 0
        // 4           1
        // 5

        // 6 nodes
        // length of binary string: 5 + 4 + 3 + 2 + 1 = 15

        let tsp = TSPInstance::new_const(
            vec![
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
                (0.0, 0.0),
            ]
        );
        let converter = TSPBinaryStringWrapper::new(
            &tsp,
            U15,
            U6
        ).unwrap();

        let mut binary_string_ordering = BinaryString::<U15>::new(vec![0; 15]);
        binary_string_ordering.vec[9] = 1;
        binary_string_ordering.vec[10] = 1;
        binary_string_ordering.vec[11] = 1;
        binary_string_ordering.vec[14] = 1;

        let expected_permutation = vec![2, 4, 5, 3, 1, 0];

        let mut permutation = converter.to_permutation(&binary_string_ordering)
            .unwrap();

        assert_eq!(
            expected_permutation,
            permutation.permutation.as_mut_slice().to_vec()
        );
    }
}