~ruther/ctu-fee-eoa

ref: e3d7f2139691f8df389f621703c3a7827d765fbf ctu-fee-eoa/codes/eoa_lib/src/evolution.rs -rw-r--r-- 6.3 KiB
e3d7f213 — Rutherther feat(tsp): allow crossing bounds in reverse subsequence perturbation a month ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use std::error::Error;
use rand::RngCore;

use crate::{comparison::BetterThanOperator, crossover::Crossover, fitness::FitnessFunction, pairing::Pairing, perturbation::PerturbationOperator, replacement::{EvaluatedChromosome, EvaluatedPopulation, Population, Replacement}, selection::Selection};

#[derive(Clone, Debug)]
pub struct EvolutionCandidate<TInput, TResult> {
    pub evaluated_chromosome: EvaluatedChromosome<TInput, TResult>,
    pub iteration: usize
}

#[derive(Clone, Debug)]
pub struct EvolutionCandidatePopulation<TInput, TResult> {
    pub current_population: EvaluatedPopulation<TInput, TResult>,
    pub iteration: usize
}

#[derive(Clone, Debug)]
pub struct EvolutionStats<TInput, TResult> {
    pub best_candidates: Vec<EvolutionCandidate<TInput, TResult>>,
}

#[derive(Clone, Debug)]
pub struct EvolutionResult<TInput, TResult> {
    pub population: EvaluatedPopulation<TInput, TResult>,
    pub stats: EvolutionStats<TInput, TResult>,
    pub best_candidate: EvaluatedChromosome<TInput, TResult>,
    pub iterations: usize
}

pub fn evolution_algorithm
    <TChromosome: Clone,
     TResult: Clone,
     const DParents: usize,
     TSelection: Selection<TChromosome, TResult>,
     TPairing: Pairing<DParents, Chromosome = TChromosome, Out = TResult>,
     TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = TResult>,
     TReplacement: Replacement<TChromosome, TResult>,
     TPerturbation: PerturbationOperator<Chromosome = TChromosome>>(
    initial_population: Population<TChromosome>,
    parents_count: usize,
    fitness: &impl FitnessFunction<In = TChromosome, Out = TResult>,
    selection: &mut TSelection,
    pairing: &mut TPairing,
    crossover: &mut TCrossover,
    perturbation: &mut TPerturbation,
    replacement: &mut TReplacement,
    better_than: &impl BetterThanOperator<TResult>,
    // TODO: termination condition
    iterations: usize,
    rng: &mut dyn RngCore,
    mut evolution: impl FnMut(
        usize,
        &EvolutionStats<TChromosome, TResult>,
        &EvaluatedPopulation<TChromosome, TResult>,

        &mut TSelection,
        &mut TPairing,
        &mut TCrossover,
        &mut TPerturbation,
        &mut TReplacement
    )
) -> Result<EvolutionResult<TChromosome, TResult>, Box<dyn Error>> {
    let mut current_population = initial_population.evaluate(fitness)?;

    let mut last_best_candidate = EvolutionCandidate {
        evaluated_chromosome: current_population.best_candidate(better_than).clone(),
        iteration: 0
    };
    let mut stats: EvolutionStats<TChromosome, TResult> = EvolutionStats {
        best_candidates: vec![]
    };

    for iteration in 0..iterations {
        // Figure out best candidate and save it if better than last time
        let best_candidate = current_population.best_candidate(better_than);

        if better_than.better_than(
            &best_candidate.evaluation,
            &last_best_candidate.evaluated_chromosome.evaluation
        ) {
            stats.best_candidates.push(last_best_candidate);

            last_best_candidate = EvolutionCandidate {
                evaluated_chromosome: best_candidate.clone(),
                iteration
            }
        }

        // Selection
        let parents = selection.select(parents_count, &current_population, better_than, rng).collect::<Vec<_>>();
        let parent_pairings = pairing.pair(&current_population, parents.into_iter());

        // Crossover
        let mut offsprings = crossover.crossover(&current_population, parent_pairings, rng);

        // Mutation
        for offspring in offsprings.iter_mut() {
            perturbation.perturb(offspring, rng);
        }

        let evaluated_offsprings = offsprings.evaluate(fitness)?;

        // Replace
        current_population = replacement.replace(current_population, evaluated_offsprings, better_than, rng);

        evolution(
            iteration,
            &stats,
            &current_population,
            selection,
            pairing,
            crossover,
            perturbation,
            replacement
        );
    }

    let best_candidate = last_best_candidate.evaluated_chromosome.clone();
    stats.best_candidates.push(last_best_candidate);

    Ok(EvolutionResult {
        population: current_population,
        best_candidate,
        stats,
        iterations
    })
}

#[cfg(test)]
pub mod tests {
    use nalgebra::Const;

    use crate::{binary_string::BinaryString, comparison::MinimizingOperator, crossover::BinaryOnePointCrossover, fitness::one_max::OneMax, initializer::{Initializer, RandomInitializer}, pairing::AdjacentPairing, perturbation::{BinaryStringBitPerturbation, BinaryStringFlipPerturbation, BinaryStringSingleBitPerturbation, CombinedPerturbation, MutationPerturbation}, replacement::{BestReplacement, Population, TournamentReplacement}, selection::TournamentSelection};

    use super::evolution_algorithm;

    #[test]
    pub fn test_evolution_one_max() {
        const D: usize = 512;
        let optimum = BinaryString::<Const<D>>::new(vec![0; D]);
        let one_max = OneMax::<Const<D>>::new();

        let initializer = RandomInitializer::<Const<D>, BinaryString::<Const<D>>>::new_binary();
        let population_size = 10;

        let mut rng_init = rand::rng();
        let population = Population::from_vec(
            initializer.initialize(Const::<D>, population_size, &mut rng_init)
        );

        let mut rng = rand::rng();
        let result = evolution_algorithm(
            population,
            50,
            &one_max,
            &mut TournamentSelection::new(5, 0.8),
            &mut AdjacentPairing::new(),
            &mut BinaryOnePointCrossover::new(),
            &mut CombinedPerturbation::new(
                vec![
                    Box::new(MutationPerturbation::new(
                        Box::new(BinaryStringSingleBitPerturbation::new()),
                        0.3)),
                    Box::new(MutationPerturbation::new(
                        Box::new(BinaryStringFlipPerturbation::new()),
                        0.3))
                ]
            ),
            &mut BestReplacement::new(),
            &MinimizingOperator,
            1000,
            &mut rng,
            |_, _, _, _, _, _, _, _| ()
        ).unwrap();

        assert_eq!(
            result.best_candidate.evaluation,
            0
        );

        assert_eq!(
            result.best_candidate.chromosome,
            optimum
        );

    }
}