~ruther/ctu-fee-eoa

ref: d2fb123198a882243cfd55408a80c3248ec45522 ctu-fee-eoa/codes/eoa_lib/src/multi_objective_evolution.rs -rw-r--r-- 15.2 KiB
d2fb1231 — Rutherther feat: use stochastic ranking for constr_hw02 11 days ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
use std::ops::{AddAssign, Sub};
use std::{cmp::Ordering, error::Error};
use std::fmt::Debug;

use rand::RngCore;

use crate::population::EvaluatedChromosome;
use crate::{comparison::{BetterThanOperator, MinimizingOperator}, crossover::Crossover, evolution::{evolution_algorithm, EvolutionResult}, fitness::FitnessFunction, pairing::Pairing, perturbation::PerturbationOperator, population::Population, replacement::BestReplacement, selection::TournamentSelection};

// Multi objective fitness function, returning a list of evaluations
pub struct MOFitness<'a,
                             const OBJECTIVES: usize,
                             TChromosome,
                             TOut,
                             TErr: Error> {
    objectives: [Box<dyn FitnessFunction<In = TChromosome, Out = TOut, Err = TErr> + 'a>; OBJECTIVES]
}

pub fn a_dominates_b<const OBJECTIVES: usize, TOut>(
    a: &[TOut; OBJECTIVES], b: &[TOut; OBJECTIVES],
    better_than: &(impl BetterThanOperator<TOut> + ?Sized)
) -> bool {
    a.iter().zip(b.iter()).all(|(a, b)| better_than.better_than(a, b) || better_than.equal(a, b))
}

pub fn a_dominated_by_b<const OBJECTIVES: usize, TOut>(
    a: &[TOut; OBJECTIVES],
    b: &[TOut; OBJECTIVES],
    better_than: &(impl BetterThanOperator<TOut> + ?Sized)
) -> bool {
    a_dominates_b(b, a, better_than)
}

impl<'a,
     const OBJECTIVES: usize,
     TChromosome,
     TOut,
     TErr: Error>
    MOFitness<'a, OBJECTIVES, TChromosome, TOut, TErr>
{
    pub fn new(objectives: [Box<dyn FitnessFunction<In = TChromosome, Out = TOut, Err = TErr> + 'a>; OBJECTIVES]) -> Self {
        Self { objectives }
    }
}

impl<'a,
     const OBJECTIVES: usize,
     TChromosome,
     TOut: Default + Copy,
     TErr: Error + 'static>
    FitnessFunction for MOFitness<'a, OBJECTIVES, TChromosome, TOut, TErr> {
    type In = TChromosome;
    type Out = [TOut; OBJECTIVES];
    type Err = TErr;

    fn fit(&self, inp: &Self::In) -> Result<Self::Out, Self::Err> {
        let mut evaluations = [Default::default(); OBJECTIVES];

        for (i, objective) in self.objectives.iter().enumerate() {
            evaluations[i] = objective.fit(inp)?;
        }

        Ok(evaluations)
    }
}

#[derive(Debug, Clone, PartialEq)]
pub struct NSGAEvaluation<TOut: PartialEq + Clone, const OBJECTIVES: usize> {
    evaluations: [TOut; OBJECTIVES],
    nondominated_front: usize,
    crowding_distance: f64
}

impl<TOut: PartialEq + Clone + PartialOrd,
     const OBJECTIVES: usize>
    PartialOrd for NSGAEvaluation<TOut, OBJECTIVES> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        match self.nondominated_front.partial_cmp(&other.nondominated_front) {
            Some(core::cmp::Ordering::Equal) => {}
            ord => return ord,
        }

        other.crowding_distance.partial_cmp(&self.crowding_distance)
    }
}

pub struct NSGAFitness<'a, const OBJECTIVES: usize, TChromosome, TOut, TErr: Error> {
    mo_fitness: MOFitness<'a, OBJECTIVES, TChromosome, TOut, TErr>,
    better_than: &'a dyn BetterThanOperator<TOut>
}

pub fn get_nondominated_fronts<const OBJECTIVES: usize,TChromosome, TOut>(
    fitted: &[EvaluatedChromosome<TChromosome, [TOut; OBJECTIVES]>],
    better_than: &(impl BetterThanOperator<TOut> + ?Sized)
) -> (Vec<usize>, Vec<Vec<usize>>) {
    let mut remaining_indices = (0..fitted.len()).collect::<Vec<_>>();
    let mut current_front = 0;
    let mut fronts = vec![0; fitted.len()];
    let mut front_indices = vec![];
    let mut current_for_removal = vec![];

    while !remaining_indices.is_empty() {
        let mut current_front_indices = vec![];
        'outer: for (i, &current) in remaining_indices.iter().enumerate() {
            let current_eval = &fitted[current].evaluation;
            for &i in remaining_indices.iter() {
                let i_eval = &fitted[i].evaluation;

                if i == current {
                    continue;
                }

                if current_eval
                    .iter()
                    .zip(i_eval.iter())
                    .all(|(a, b)| better_than.equal(a, b)) {
                    continue;
                }

                if a_dominated_by_b(current_eval, i_eval, better_than) {
                    // At least one dominates current...
                    continue 'outer;
                }
            }

            // None dominates current...
            fronts[current] = current_front;
            current_front_indices.push(current);
            current_for_removal.push(i);
        }

        front_indices.push(current_front_indices);

        for &for_removal in current_for_removal.iter().rev() {
            remaining_indices.swap_remove(for_removal);
        }
        current_for_removal.clear();

        current_front += 1;
    }

    // current_front is counting from backwards, so reverse it
    (fronts, front_indices)
}

pub fn get_front_crowding_distances<const NORMALIZE: bool,
                              const OBJECTIVES: usize,
                              TChromosome,
                              TOut: Copy + Into<f64>>(
    fitted: &[EvaluatedChromosome<TChromosome, [TOut; OBJECTIVES]>],
    indices: &[usize],
    better_than: &(impl BetterThanOperator<TOut> + ?Sized),
    crowding_distances: &mut [f64]
) {
    let mut min_maxs_init = [(Default::default(), Default::default()); OBJECTIVES];
    for objective in 0..OBJECTIVES {
        min_maxs_init[objective].0 = fitted[indices[0]].evaluation[objective].into();
        min_maxs_init[objective].1 = fitted[indices[0]].evaluation[objective].into();
    }

    // For each objective, find minimum and maximum
    let min_maxs = indices
        .iter()
        .map(|&i| &fitted[i])
        .fold(
            min_maxs_init,
            |mut min_maxs, current| {
                for objective in 0..OBJECTIVES {
                    let mut min_max = min_maxs[objective];
                    let evaluation = current.evaluation[objective].into();

                    if evaluation > min_max.1 {
                        min_max.1 = evaluation;
                    }
                    if evaluation < min_max.0 {
                        min_max.0 = evaluation;
                    }

                    min_maxs[objective] = min_max;
                }

                min_maxs
            });

    let crowding_orderings = (0..OBJECTIVES)
        .map(|objective| {
            let mut indices = indices.iter().copied().collect::<Vec<_>>();
            indices.sort_unstable_by(|&a, &b| better_than.ordering(
                &fitted[a].evaluation[objective],
                &fitted[b].evaluation[objective]
            ));
            indices
        })
        .collect::<Vec<Vec<usize>>>();

    for objective in 0..OBJECTIVES {
        let crowding_orderings = &crowding_orderings[objective];
        let mut greaters = vec![f64::INFINITY; fitted.len()];
        let mut lessers = vec![-f64::INFINITY; fitted.len()];

        let mut greaters_index = 0;
        for i in 1..indices.len() {
            let current = fitted[crowding_orderings[i]].evaluation[objective].into();
            let previous = fitted[crowding_orderings[i - 1]].evaluation[objective].into();

            if current > previous {
                lessers[i] = previous;

                while greaters_index < i {
                    greaters[greaters_index] = current;
                    greaters_index += 1;
                }
            } else {
                lessers[i] = lessers[i - 1];
            }
        }

        for (i, &current) in crowding_orderings.iter().enumerate() {
            crowding_distances[current] +=
                (greaters[i] - lessers[i]).abs() /
                if NORMALIZE { (min_maxs[objective].1 - min_maxs[objective].0).abs() } else { 1.0 };
        }
    }
}

pub fn get_crowding_distances<const NORMALIZE: bool,
                              const OBJECTIVES: usize,
                              TChromosome,
                              TOut: Copy + Into<f64>>(
    fitted: &[EvaluatedChromosome<TChromosome, [TOut; OBJECTIVES]>],
    front_indices: &[Vec<usize>],
    better_than: &(impl BetterThanOperator<TOut> + ?Sized)
) -> Vec<f64> {
    let mut crowding_distances = vec![0.0; fitted.len()];

    for indices in front_indices {
        get_front_crowding_distances::<NORMALIZE, OBJECTIVES, TChromosome, TOut>(
            fitted,
            &indices,
            better_than,
            &mut crowding_distances
        );
    }

    crowding_distances
}

impl<'a,
     const OBJECTIVES: usize,
     TChromosome,
     TOut: Copy + Into<f64>,
     TErr: Error>
    NSGAFitness<'a, OBJECTIVES, TChromosome, TOut, TErr> {
        pub fn new(
            objectives: [Box<dyn FitnessFunction<In = TChromosome, Out = TOut, Err = TErr> + 'a>; OBJECTIVES],
            better_than: &'a impl BetterThanOperator<TOut>
        ) -> Self {
            Self {
                mo_fitness: MOFitness::<'a, OBJECTIVES, _, _, _>::new(objectives),
                better_than
            }
        }
}

impl<'a,
     const OBJECTIVES: usize,
     TChromosome: Clone,
     TOut: PartialEq + Default + Copy + PartialOrd + Into<f64>,
     TErr: Error + 'static>
    FitnessFunction for NSGAFitness<'a, OBJECTIVES, TChromosome, TOut, TErr> {
    type In = TChromosome;
    type Out = NSGAEvaluation<TOut, OBJECTIVES>;
    type Err = TErr;

    fn fit(&self, _: &Self::In) -> Result<Self::Out, Self::Err> {
        panic!("NSGA fitness does not implement single fit. To get all the non dominated fronts informations, fit_population needs to be called.");
    }

    fn fit_population(&self, inp: Vec<Self::In>) -> Result<Vec<crate::population::EvaluatedChromosome<Self::In, Self::Out>>, Self::Err> {
        let fitted = self.mo_fitness.fit_population(inp)?;

        let (fronts, front_indices) = get_nondominated_fronts(&fitted, self.better_than);
        let cd = get_crowding_distances
            ::<true, OBJECTIVES, TChromosome, TOut>(&fitted, &front_indices, self.better_than);

        Ok(fitted
           .into_iter()
           .zip(fronts.into_iter())
           .zip(cd.into_iter())
           .map(|((individual, nondominated_front), crowding_distance)| {
            EvaluatedChromosome {
                chromosome: individual.chromosome,
                evaluation: NSGAEvaluation {
                    evaluations: individual.evaluation,
                    nondominated_front,
                    crowding_distance
                }
            }
           })
           .collect())
    }
}

pub fn nsga_2<const OBJECTIVES: usize,
              TChromosome: Clone,
              TResult: Clone + Debug + PartialEq + Default + Copy + PartialOrd + Into<f64>,
              TErr: Error + 'static,
              const DParents: usize,
              TFitness: FitnessFunction<In = TChromosome, Out = TResult>,
              TPairing: Pairing<DParents, Chromosome = TChromosome, Out = NSGAEvaluation<TResult, OBJECTIVES>>,
              TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = NSGAEvaluation<TResult, OBJECTIVES>>,
              TPerturbation: PerturbationOperator<Chromosome = TChromosome>> (
    initial_population: Population<TChromosome>,
    parents_count: usize,
    // TODO: possibility for objectives with different outputs?
    objectives: [Box<dyn FitnessFunction<In = TChromosome, Out = TResult, Err = TErr> + '_>; OBJECTIVES],
    pairing: &mut TPairing,
    crossover: &mut TCrossover,
    perturbation: &mut TPerturbation,
    // TODO: possibility for better_than different for different fitness functions
    better_than: &impl BetterThanOperator<TResult>,
    // TODO: termination condition
    iterations: usize,
    rng: &mut dyn RngCore
) -> Result<EvolutionResult<TChromosome, [TResult; OBJECTIVES]>, Box<dyn Error>> {
    let result = evolution_algorithm(
        initial_population,
        parents_count,
        &mut NSGAFitness::new(objectives, better_than),
        &mut TournamentSelection::new(5, 1.0),
        pairing,
        crossover,
        perturbation,
        &mut BestReplacement::new(),
        &MinimizingOperator::new(),
        iterations,
        rng,
        |_, _, _, _, _, _, _, _, _| {
        }
    )?;

    Ok(result.map(|res| {
        res.evaluations
    }))
}

#[cfg(test)]
pub mod test {
    use std::str::FromStr;

    use approx::assert_abs_diff_eq;

    use crate::{comparison::MinimizingOperator, multi_objective_evolution::{get_crowding_distances, get_nondominated_fronts}, population::EvaluatedChromosome, test_infra::load_test_file};

    #[derive(Debug)]
    pub struct EvaluationResult {
        front: usize,
        crowding_distance: f64
    }

    impl FromStr for EvaluationResult {
        type Err = <f64 as FromStr>::Err;

        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let mut splitted = s.split(' ');

            let front: f64 = splitted.next().unwrap().parse()?;
            let crowding_distance: f64 = splitted.next().unwrap().parse()?;

            Ok(EvaluationResult {
                front: front as usize,
                crowding_distance
            })
        }
    }

    pub fn perform_test(file: &str) {
        let data = load_test_file::<f64, EvaluationResult>(file);

        let evaluations = data
            .iter()
            .map(|vec| [vec.inp[0], vec.inp[1]])
            .collect::<Vec<_>>();

        println!("{:?}", evaluations);

        let chromosomes = evaluations
            .into_iter()
            .enumerate()
            .map(|(i, evaluation)| EvaluatedChromosome {
            chromosome: i,
            evaluation
            })
            .collect::<Vec<_>>();

        let (fronts, front_indices) = get_nondominated_fronts(&chromosomes, &MinimizingOperator::new());
        let crowding_distances = get_crowding_distances
            ::<false, 2, usize, f64>(&chromosomes, &front_indices, &MinimizingOperator::new());

        assert_eq!(fronts.len(), chromosomes.len());
        assert_eq!(crowding_distances.len(), chromosomes.len());

        println!("{:?}", fronts);
        println!("{:?}", crowding_distances);

        for (i, test) in data.iter().enumerate() {
            println!("Checking index {}", i);
            let actual_front = fronts[i];
            let actual_crowding_distance = crowding_distances[i];

            assert_eq!(actual_front + 1, test.out.front);
            if actual_crowding_distance.is_finite() {
                assert_abs_diff_eq!(actual_crowding_distance, test.out.crowding_distance, epsilon = 0.0001);
            } else {
                assert_eq!(actual_crowding_distance, test.out.crowding_distance);
            }
        }

    }

    #[test]
    pub fn test_01() {
        perform_test("tests/multi_objective_1.txt");
    }

    #[test]
    pub fn test_02() {
        perform_test("tests/multi_objective_2.txt");
    }

    #[test]
    pub fn test_03() {
        perform_test("tests/multi_objective_3.txt");
    }

    #[test]
    pub fn test_04() {
        perform_test("tests/multi_objective_4.txt");
    }

    #[test]
    pub fn test_5() {
        perform_test("tests/multi_objective_5.txt");
    }

    #[test]
    pub fn test_6() {
        perform_test("tests/multi_objective_6.txt");
    }

    #[test]
    pub fn test_7() {
        perform_test("tests/multi_objective_7.txt");
    }

    #[test]
    pub fn test_8() {
        perform_test("tests/multi_objective_8.txt");
    }

    #[test]
    pub fn test_9() {
        perform_test("tests/multi_objective_9.txt");
    }
}