use std::convert::Infallible;
use eoa_lib::fitness::FitnessFunction;
use itertools::Itertools;
use nalgebra::{allocator::Allocator, distance, Const, DefaultAllocator, Dim, Dyn, OMatrix, OVector, Point};
use plotters::prelude::*;
use crate::graph::{minimal_spanning_tree_kruskal, Edge, GenericGraph, Graph, WeightedEdge};
#[derive(PartialEq, Clone, Debug)]
pub struct TSPCity {
point: Point<f64, 2>
}
#[derive(Debug)]
pub struct TSPEdge {
from: usize,
to: usize,
distance: f64
}
impl Edge for TSPEdge {
fn from_node(&self) -> usize {
self.from
}
fn to_node(&self) -> usize {
self.to
}
}
impl WeightedEdge for TSPEdge {
type Cost = f64;
fn cost(&self) -> Self::Cost {
self.distance
}
}
#[derive(PartialEq, Clone, Debug)]
pub struct NodePermutation<D: Dim>
where
DefaultAllocator: Allocator<D>
{
pub permutation: OVector<usize, D>
}
/// An instance of TSP, a fully connected graph
/// with cities that connect to each other.
/// The D parameter represents the number of cities.
#[derive(PartialEq, Clone, Debug)]
pub struct TSPInstance<D>
where
D: Dim,
DefaultAllocator: Allocator<D, D>
{
pub cities: Vec<TSPCity>,
pub distances: OMatrix<f64, D, D>
}
impl TSPInstance<Dyn>
where
{
pub fn new_dyn(cities: Vec<(f64, f64)>) -> Self {
let dim = Dyn(cities.len());
let cities = OMatrix::<f64, Dyn, Const<2>>::from_fn_generic(dim, Const::<2>, |i, j| if j == 0 { cities[i].0 } else { cities[i].1 });
TSPInstance::new(cities)
}
}
impl<const D: usize> TSPInstance<Const<D>>
where
{
pub fn new_const(cities: Vec<(f64, f64)>) -> Self {
let cities = OMatrix::<f64, Const<D>, Const<2>>::from_fn(|i, j| if j == 0 { cities[i].0 } else { cities[i].1 });
TSPInstance::new(cities)
}
}
impl<D> TSPInstance<D>
where
D: Dim,
DefaultAllocator: Allocator<D, D>,
DefaultAllocator: Allocator<D>,
DefaultAllocator: Allocator<D, Const<2>>,
{
pub fn new(cities: OMatrix<f64, D, Const<2>>) -> Self {
let dim = cities.shape_generic().0;
let cities = cities.row_iter()
.map(|position|
TSPCity { point: Point::<f64, 2>::new(position[0], position[1]) }
)
.collect::<Vec<_>>();
let distances = OMatrix::from_fn_generic(
dim,
dim,
|i, j| distance(&cities[i].point, &cities[j].point)
);
Self {
cities,
distances
}
}
pub fn to_graph(self) -> GenericGraph<TSPCity, TSPEdge> {
let cities = self.cities.len();
let mut graph = GenericGraph::new(self.cities, false);
for i in 0..cities {
for j in i+1..cities {
graph.add_generic_edge(TSPEdge {
from: i,
to: j,
distance: self.distances[(i, j)]
});
}
}
graph
}
}
impl<D> TSPInstance<D>
where
D: Dim,
DefaultAllocator: Allocator<D, D>,
DefaultAllocator: Allocator<D>,
{
pub fn dimension(&self) -> D {
self.distances.shape_generic().0
}
pub fn verify_solution(solution: &NodePermutation<D>) -> bool {
let mut seen_vertices = OVector::from_element_generic(
solution.permutation.shape_generic().0,
solution.permutation.shape_generic().1,
false
);
for &vertex in solution.permutation.iter() {
// This vertex index is out of bounds
if vertex >= solution.permutation.len() {
return false;
}
// A node is repeating
if seen_vertices[vertex] {
return false;
}
seen_vertices[vertex] = true;
}
true
}
pub fn solution_cost(&self, solution: &NodePermutation<D>) -> f64 {
solution.permutation
.iter()
.circular_tuple_windows()
.map(|(&node1, &node2): (&usize, &usize)| self.distances(node1, node2))
.sum()
}
pub fn distances(&self, city_a: usize, city_b: usize) -> f64 {
self.distances[(city_a, city_b)]
}
fn plot_internal(&self, solution: Option<&NodePermutation<D>>, filename: &str) -> Result<(), Box<dyn std::error::Error>> {
let root = BitMapBackend::new(filename, (800, 600)).into_drawing_area();
root.fill(&WHITE)?;
let x_coords: Vec<f64> = self.cities.iter().map(|city| city.point.x).collect();
let y_coords: Vec<f64> = self.cities.iter().map(|city| city.point.y).collect();
let x_min = x_coords.iter().fold(f64::INFINITY, |a, &b| a.min(b));
let x_max = x_coords.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
let y_min = y_coords.iter().fold(f64::INFINITY, |a, &b| a.min(b));
let y_max = y_coords.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
let x_padding = (x_max - x_min) * 0.1;
let y_padding = (y_max - y_min) * 0.1;
let x_range = (x_min - x_padding)..(x_max + x_padding);
let y_range = (y_min - y_padding)..(y_max + y_padding);
let title = if let Some(sol) = solution {
format!("TSP Solution (Cost: {:.2})", self.solution_cost(sol))
} else {
"TSP Instance".to_string()
};
let mut chart = ChartBuilder::on(&root)
.caption(&title, ("sans-serif", 40))
.margin(10)
.x_label_area_size(40)
.y_label_area_size(40)
.build_cartesian_2d(x_range, y_range)?;
chart.configure_mesh().draw()?;
if let Some(sol) = solution {
chart.draw_series(
sol.permutation.iter().circular_tuple_windows().map(|(&city1_idx, &city2_idx)| {
let city1 = &self.cities[city1_idx];
let city2 = &self.cities[city2_idx];
PathElement::new(vec![(city1.point.x, city1.point.y), (city2.point.x, city2.point.y)], BLUE)
})
)?;
}
chart.draw_series(
self.cities.iter().map(|city| {
Circle::new((city.point.x, city.point.y), 5, RED.filled())
})
)?;
root.present()?;
Ok(())
}
pub fn plot(&self, filename: &str) -> Result<(), Box<dyn std::error::Error>> {
self.plot_internal(None, filename)
}
pub fn draw_solution(&self, solution: &NodePermutation<D>, filename: &str) -> Result<(), Box<dyn std::error::Error>> {
self.plot_internal(Some(solution), filename)
}
}
impl<D> FitnessFunction for TSPInstance<D>
where
D: Dim,
DefaultAllocator: Allocator<D, D>,
DefaultAllocator: Allocator<D>,
{
type In = NodePermutation<D>;
type Out = f64;
type Err = Infallible;
fn fit(self: &Self, inp: &Self::In) -> Result<Self::Out, Self::Err> {
assert_eq!(inp.permutation.len(), self.cities.len());
assert!(TSPInstance::verify_solution(inp));
Ok(self.solution_cost(inp))
}
}
#[cfg(test)]
mod tests {
use std::convert::Infallible;
use eoa_lib::{binary_string::BinaryString, crossover::Crossover, fitness::FitnessFunction, initializer::Initializer, pairing::{AdjacentPairing, Pairing}, replacement::Population};
use nalgebra::{Const, SVector, U15, U6};
use rand::{rngs::StdRng, seq::SliceRandom, RngCore, SeedableRng};
use crate::tsp::TSPInstance;
use super::{TSPBinaryStringWrapper, EdgeRecombinationCrossover, NodePermutation, ReverseSubsequencePerturbation, TSPRandomInitializer};
use eoa_lib::perturbation::PerturbationOperator;
struct MockRng;
impl RngCore for MockRng {
fn next_u32(&mut self) -> u32 {
0
}
fn next_u64(&mut self) -> u64 {
0
}
fn fill_bytes(&mut self, _: &mut [u8]) {
panic!()
}
}
struct ZeroFitness<const LEN: usize>;
impl<const LEN: usize> FitnessFunction for ZeroFitness<LEN> {
type In = NodePermutation<Const<LEN>>;
type Out = f64;
type Err = Infallible;
fn fit(self: &Self, _: &Self::In) -> Result<Self::Out, Self::Err> {
Ok(0.0)
}
}
#[test]
fn test_verify_solution() {
let mut rng = rand::rng();
let rng = &mut rng;
let mut chromosome = NodePermutation::<Const<6>> {
permutation: SVector::from_vec(vec![0, 1, 2, 3, 4, 5])
};
for _ in 0..100 {
chromosome.permutation.as_mut_slice().shuffle(rng);
assert!(TSPInstance::verify_solution(&chromosome));
}
// Out of bounds
chromosome.permutation[0] = 6;
assert!(!TSPInstance::verify_solution(&chromosome));
chromosome.permutation[0] = 7;
assert!(!TSPInstance::verify_solution(&chromosome));
chromosome.permutation[0] = 8;
assert!(!TSPInstance::verify_solution(&chromosome));
// Repeating
chromosome.permutation[0] = 5;
chromosome.permutation[1] = 5;
assert!(!TSPInstance::verify_solution(&chromosome));
let chromosome = NodePermutation::<Const<6>> {
permutation: SVector::from_vec(vec![0, 1, 2, 3, 1, 5])
};
assert!(!TSPInstance::verify_solution(&chromosome));
}
#[test]
fn test_binary_string_representation() {
// x 0 1 2 3 4 5
// 0 0 0 0 0 0 0
// 1 1 0 0 0 0 0
// 2 1 1 0 0 0 0
// 3 1 1 1 0 0 0
// 4 1 1 1 1 0 0
// 5 1 1 1 1 1 0
// x 0 1 2 3 4 5
// 0 0 0 0 0 0
// 1 0 0 0 0
// 2 0 0 0
// 3 0 0
// 4 0
// 5
// 6 nodes
// length of binary string: 5 + 4 + 3 + 2 + 1 = 15
let tsp = TSPInstance::new_const(
vec![
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
]
);
let converter = TSPBinaryStringWrapper::new(
&tsp,
U15,
U6
).unwrap();
let binary_string_ordering = BinaryString::<U15>::new(vec![1; 15]);
let mut expected_permutation = vec![0, 1, 2, 3, 4, 5];
let mut permutation = converter.to_permutation(&binary_string_ordering)
.unwrap();
assert_eq!(
expected_permutation,
permutation.permutation.as_mut_slice().to_vec()
);
let binary_string_ordering = BinaryString::<U15>::new(vec![0; 15]);
expected_permutation.reverse();
let mut permutation = converter.to_permutation(&binary_string_ordering)
.unwrap();
assert_eq!(
expected_permutation,
permutation.permutation.as_mut_slice().to_vec()
)
}
#[test]
fn test_nontrivial_binary_string_representation() {
// x 0 1 2 3 4 5
// 0 0 1 0 0 0 0
// 1 0 0 0 0 0 0
// 2 1 1 0 0 0 1
// 3 1 1 1 0 0 0
// 4 1 1 1 1 0 0
// 5 1 1 0 1 1 0
// x 0 1 2 3 4 5
// 0 0 0 0 0 0
// 1 0 0 0 0
// 2 1 1 1
// 3 0 0
// 4 1
// 5
// 6 nodes
// length of binary string: 5 + 4 + 3 + 2 + 1 = 15
let tsp = TSPInstance::new_const(
vec![
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
(0.0, 0.0),
]
);
let converter = TSPBinaryStringWrapper::new(
&tsp,
U15,
U6
).unwrap();
let mut binary_string_ordering = BinaryString::<U15>::new(vec![0; 15]);
binary_string_ordering.vec[9] = 1;
binary_string_ordering.vec[10] = 1;
binary_string_ordering.vec[11] = 1;
binary_string_ordering.vec[14] = 1;
let expected_permutation = vec![2, 4, 5, 3, 1, 0];
let mut permutation = converter.to_permutation(&binary_string_ordering)
.unwrap();
assert_eq!(
expected_permutation,
permutation.permutation.as_mut_slice().to_vec()
);
}
#[test]
fn test_edge_recombination_properties() {
let crossover = EdgeRecombinationCrossover::<Const<10>>::new();
let initializer = TSPRandomInitializer::<Const<10>>::new();
let adjacency_pairing = AdjacentPairing::new();
let mut rng = StdRng::seed_from_u64(0);
for _ in 0..100 {
let parents = Population::from_vec(initializer.initialize(Const::<10>, 10, &mut rng));
let parents = parents.evaluate(&ZeroFitness).unwrap();
let pairs = adjacency_pairing.pair(&parents, 0..10);
let result = crossover.crossover(&parents, pairs, &mut rng);
// Test invariants that should always hold:
for chromosome in result.into_iter() {
assert!(TSPInstance::verify_solution(&chromosome));
}
}
}
#[test]
fn test_edge_recombination_specific_case() {
let parent1: Vec<usize> = vec![0, 1, 2, 4, 5, 3];
let parent2: Vec<usize> = vec![2, 0, 1, 3, 4, 5];
let parent1 = NodePermutation::<U6> { permutation: SVector::<usize, 6>::from_vec(parent1) };
let parent2 = NodePermutation::<U6> { permutation: SVector::<usize, 6>::from_vec(parent2) };
let pairing = SVector::<usize, 2>::new(0, 1);
let pairings = vec![pairing].into_iter();
let parents = Population::from_vec(vec![parent1, parent2]).evaluate(&ZeroFitness).unwrap();
let crossover = EdgeRecombinationCrossover::<U6>::new();
let offsprings = crossover.crossover(&parents, pairings, &mut MockRng);
let offspring = offsprings.into_iter().next().unwrap();
// NOTE: this sort of relies on the implementation of the algorithm (when there are multiple possibilities
// currently the algorithm always chooses last). It's possible this test will break due to valid changes to the algorithm.
assert_eq!(vec![0usize, 1, 3, 4, 5, 2], offspring.permutation.into_iter().copied().collect::<Vec<_>>())
}
#[test]
fn test_reverse_subsequence_perturbation_behavior() {
let perturbation = ReverseSubsequencePerturbation::<Const<6>>::new();
// Test multiple specific seeds to get predictable behavior
// We'll try different seeds until we find ones that give us the patterns we want to test
// Test case 1: Try to find a seed that reverses a middle subsequence
let mut found_middle_reverse = false;
for seed in 0..1000 {
let mut rng = StdRng::seed_from_u64(seed);
let mut chromosome = NodePermutation::<Const<6>> {
permutation: SVector::<usize, 6>::from_vec(vec![0, 1, 2, 3, 4, 5])
};
let original = chromosome.clone();
perturbation.perturb(&mut chromosome, &mut rng);
// Check if it's a valid reverse pattern and not the whole array or single element
let result: Vec<usize> = chromosome.permutation.into_iter().copied().collect();
if result != vec![0, 1, 2, 3, 4, 5] && // Changed
result != vec![5, 4, 3, 2, 1, 0] && // Not whole array reverse
TSPInstance::verify_solution(&chromosome) {
found_middle_reverse = true;
break;
}
}
assert!(found_middle_reverse, "Should find at least one case of partial subsequence reversal");
}
#[test]
fn test_reverse_subsequence_perturbation_deterministic_seed() {
let perturbation = ReverseSubsequencePerturbation::<Const<6>>::new();
// Use a specific seed that we know produces a certain result
let mut rng1 = StdRng::seed_from_u64(42);
let mut chromosome1 = NodePermutation::<Const<6>> {
permutation: SVector::<usize, 6>::from_vec(vec![0, 1, 2, 3, 4, 5])
};
perturbation.perturb(&mut chromosome1, &mut rng1);
// Same seed should produce same result
let mut rng2 = StdRng::seed_from_u64(42);
let mut chromosome2 = NodePermutation::<Const<6>> {
permutation: SVector::<usize, 6>::from_vec(vec![0, 1, 2, 3, 4, 5])
};
perturbation.perturb(&mut chromosome2, &mut rng2);
assert_eq!(chromosome1.permutation, chromosome2.permutation);
assert!(TSPInstance::verify_solution(&chromosome1));
assert!(TSPInstance::verify_solution(&chromosome2));
}
#[test]
fn test_reverse_subsequence_perturbation_different_initial_permutations() {
let perturbation = ReverseSubsequencePerturbation::<Const<5>>::new();
// Test with a non-sequential initial permutation
let mut rng = StdRng::seed_from_u64(123);
let mut chromosome = NodePermutation::<Const<5>> {
permutation: SVector::<usize, 5>::from_vec(vec![2, 0, 4, 1, 3])
};
let original_elements: std::collections::HashSet<usize> =
chromosome.permutation.iter().copied().collect();
perturbation.perturb(&mut chromosome, &mut rng);
// Verify all original elements are still present
let new_elements: std::collections::HashSet<usize> =
chromosome.permutation.iter().copied().collect();
assert_eq!(original_elements, new_elements);
// Verify it's still a valid permutation
assert!(TSPInstance::verify_solution(&chromosome));
}
#[test]
fn test_reverse_subsequence_perturbation_edge_cases() {
let perturbation = ReverseSubsequencePerturbation::<Const<2>>::new();
// Test with minimum size permutation (2 elements)
let mut rng = StdRng::seed_from_u64(456);
let mut chromosome = NodePermutation::<Const<2>> {
permutation: SVector::<usize, 2>::from_vec(vec![0, 1])
};
perturbation.perturb(&mut chromosome, &mut rng);
let result: Vec<usize> = chromosome.permutation.into_iter().copied().collect();
// With 2 elements, it should either stay [0,1] or become [1,0]
assert!(result == vec![0, 1] || result == vec![1, 0]);
assert!(TSPInstance::verify_solution(&chromosome));
}
#[test]
fn test_reverse_subsequence_perturbation_is_reversible() {
let perturbation = ReverseSubsequencePerturbation::<Const<6>>::new();
// Any sequence of reversals should be reversible
let mut rng = StdRng::seed_from_u64(789);
let original = NodePermutation::<Const<6>> {
permutation: SVector::<usize, 6>::from_vec(vec![0, 1, 2, 3, 4, 5])
};
let mut chromosome = original.clone();
// Apply perturbation twice with same seed (reset RNG)
perturbation.perturb(&mut chromosome, &mut rng);
let after_first = chromosome.clone();
// Since we can't easily reverse the exact operation, at least verify
// that multiple applications maintain the permutation property
for _ in 0..10 {
perturbation.perturb(&mut chromosome, &mut rng);
assert!(TSPInstance::verify_solution(&chromosome));
}
}
#[test]
fn test_reverse_subsequence_perturbation_preserves_elements() {
let perturbation = ReverseSubsequencePerturbation::<Const<10>>::new();
let initializer = TSPRandomInitializer::<Const<10>>::new();
let mut rng = StdRng::seed_from_u64(42);
// Test with multiple random permutations
for _ in 0..50 {
let mut chromosome = initializer.initialize_single(Const::<10>, &mut rng);
let original_elements: std::collections::HashSet<usize> = chromosome.permutation.iter().copied().collect();
perturbation.perturb(&mut chromosome, &mut rng);
// Verify all elements are still present
let new_elements: std::collections::HashSet<usize> = chromosome.permutation.iter().copied().collect();
assert_eq!(original_elements, new_elements);
// Verify it's still a valid permutation
assert!(TSPInstance::verify_solution(&chromosome));
}
}
#[test]
fn test_reverse_subsequence_perturbation_actually_changes_permutation() {
let perturbation = ReverseSubsequencePerturbation::<Const<8>>::new();
let mut rng = StdRng::seed_from_u64(12345);
// Test that the perturbation actually changes the permutation (with high probability)
let mut changes_detected = 0;
let total_tests = 100;
for _ in 0..total_tests {
let mut chromosome = NodePermutation::<Const<8>> {
permutation: SVector::<usize, 8>::from_vec(vec![0, 1, 2, 3, 4, 5, 6, 7])
};
let original = chromosome.clone();
perturbation.perturb(&mut chromosome, &mut rng);
if chromosome.permutation != original.permutation {
changes_detected += 1;
}
// Always verify it's still a valid permutation
assert!(TSPInstance::verify_solution(&chromosome));
}
// We expect at least 85% of random perturbations to actually change the permutation
// (only fails if start == end randomly, which should be rare)
assert!(changes_detected >= 85,
"Expected at least 85 changes out of {} tests, but got {}",
total_tests, changes_detected);
}
}