use std::convert::Infallible;
use eoa_lib::{constraints::LowerThanConstraintFunction, fitness::FitnessFunction};
use nalgebra::{OVector, SVector};
pub struct ArbitraryFitness<const SIZE: usize> {
fun: Box<dyn Fn(SVector<f64, SIZE>) -> f64>
}
impl<const SIZE: usize> ArbitraryFitness<SIZE> {
pub fn new(fun: Box<dyn Fn(SVector<f64, SIZE>) -> f64>) -> Self {
Self {
fun
}
}
}
impl<const SIZE: usize> FitnessFunction for ArbitraryFitness<SIZE> {
type In = SVector<f64, SIZE>;
type Out = f64;
type Err = Infallible;
fn fit(&self, inp: &Self::In) -> Result<Self::Out, Self::Err> {
Ok((self.fun)(*inp))
}
}
fn problem_g06() -> (ArbitraryFitness<2>, [LowerThanConstraintFunction<SVector<f64, 2>, f64>; 2], f64) {
(
ArbitraryFitness::new(
Box::new(|vec| (vec[0] - 10.0).powi(3) + (vec[1] - 20.0).powi(3))
),
[
LowerThanConstraintFunction::new(
Box::new(|vec| -(vec[0] - 5.0).powi(2) - (vec[1] - 5.0).powi(2) + 100.0)
),
LowerThanConstraintFunction::new(
Box::new(|vec| (vec[0] - 6.0).powi(2) + (vec[1] - 5.0).powi(2) - 82.81)
),
],
-6961.8137558015
)
}
fn problem_g08(eps: f64) -> (ArbitraryFitness<2>, [LowerThanConstraintFunction<SVector<f64, 2>, f64>; 2], f64) {
(
ArbitraryFitness::new(
Box::new(|vec| {
let num = (2.0 * std::f64::consts::PI * vec[0]).sin().powi(3)
* (2.0 * std::f64::consts::PI * vec[1]).sin();
let den = vec[0].powi(3) * (vec[0] + vec[1]);
-num / den
})
),
[
LowerThanConstraintFunction::new(
Box::new(move |vec| {
let x1 = vec[0];
let x2 = vec[1];
x1.powi(2) - x2 + 1.0
})
),
LowerThanConstraintFunction::new(
Box::new(move |vec| {
let x1 = vec[0];
let x2 = vec[1];
1.0 - x1 + (x2 - 4.0).powi(2)
})
),
],
-0.0958250414180359
)
}
pub fn problem_g11(eps: f64) -> (ArbitraryFitness<2>, [LowerThanConstraintFunction<SVector<f64, 2>, f64>; 2], f64) {
(
ArbitraryFitness::new(
Box::new(|vec| {
// Minimize f(x) = x1^2 + (x2 - 1)^2
vec[0].powi(2) + (vec[1] - 1.0).powi(2)
})
),
[
// Equality h(x) = x2 - x1^2 = 0
// Transformed 1: h - eps >= 0 => -(h - eps) <= 0
LowerThanConstraintFunction::new(
Box::new(move |vec| {
let h = vec[1] - vec[0].powi(2);
h - eps
})
),
// Transformed 2: eps - h >= 0 => -(eps - h) <= 0
LowerThanConstraintFunction::new(
Box::new(move |vec| {
let h = vec[1] - vec[0].powi(2);
eps - h
})
),
],
0.7499 // Best known optimum
)
}
pub fn problem_g24() -> (ArbitraryFitness<2>, [LowerThanConstraintFunction<SVector<f64, 2>, f64>; 2], f64) {
(
ArbitraryFitness::new(
Box::new(|vec| {
// Minimize f(x) = -x1 - x2
-vec[0] - vec[1]
})
),
[
// g1(x) = -2x1^4 + 8x1^3 - 8x1^2 + x2 - 2 <= 0
LowerThanConstraintFunction::new(
Box::new(|vec| {
-2.0 * vec[0].powi(4) + 8.0 * vec[0].powi(3) - 8.0 * vec[0].powi(2) + vec[1] - 2.0
})
),
// g2(x) = -4x1^4 + 32x1^3 - 88x1^2 + 96x1 + x2 - 36 <= 0
LowerThanConstraintFunction::new(
Box::new(|vec| {
-4.0 * vec[0].powi(4) + 32.0 * vec[0].powi(3) - 88.0 * vec[0].powi(2) + 96.0 * vec[0] + vec[1] - 36.0
})
),
],
-5.50801327159536 // Best known optimum
)
}
fn main() {
println!("Hello, world!");
}