~ruther/ctu-fee-eoa

ref: 8ac232c0d2daecb1c39475e86b0f3c007bbf8fae ctu-fee-eoa/codes/tsp_hw01/src/graph.rs -rw-r--r-- 17.7 KiB
8ac232c0 — Rutherther chore: fix warnings a month ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
use std::{cmp::Ordering, collections::VecDeque};

use crate::union_find::UnionFind;

pub type Distance = usize;

pub trait Graph {
    type Node;
    type Edge: Edge;

    /// All nodes.
    fn nodes(&self) -> impl Iterator<Item = &Self::Node>;
    /// All edges.
    fn edges(&self) -> impl Iterator<Item = &Self::Edge>;

    /// Indices of neighbors reachable from node.
    fn neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>>;
    /// Indices of neighbors that can reach node.
    /// For directed graphs, returns same result as neighbor_idxs
    fn reverse_neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>>;
    /// All edges going to or from node.
    /// For directed graphs, mind the from and to distinction.
    fn edges_of_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>>;

    /// Look if there is an edge between nodes from and to.
    /// It is expected this function will be overriden with more performant version.
    fn has_edge(&self, from: usize, to: usize) -> bool {
        self.edges()
            .any(|edge| edge.from_node() == from && edge.to_node() == to)
    }

    /// Find an edge that connects nodes from and to, if it exists.
    /// If it doesn't, return none.
    /// It is expected this function will be overriden with more performant version.
    fn get_edge_between(&self, from: usize, to: usize) -> Option<usize> {
        self.edges_of_idxs(from)
            .map(|edges| edges
                 .filter(|&edge| self.edge(edge).unwrap().to_node() == to)
                 .next())
            .flatten()
    }

    /// Get a single edge at the given index.
    fn edge(&self, id: usize) -> Option<&Self::Edge> {
        self.edges().skip(id).next()
    }

    /// Get a single node at the given index.
    fn node(&self, id: usize) -> Option<&Self::Node> {
        self.nodes().skip(id).next()
    }
}

pub trait MutGraph: Graph {
    fn nodes_mut(&mut self) -> impl Iterator<Item = &mut Self::Node>;
    fn edges_mut(&mut self) -> impl Iterator<Item = &mut Self::Edge>;

    fn node_mut(&mut self, id: usize) -> Option<&mut Self::Node> {
        self.nodes_mut().skip(id).next()
    }

    fn edge_mut(&mut self, id: usize) -> Option<&mut Self::Edge> {
        self.edges_mut().skip(id).next()
    }
}

pub trait WeightedEdge {
    type Cost: PartialOrd;
    fn cost(&self) -> Self::Cost;
}

/// An edge.
pub trait Edge {
    /// Index of a node this edge goes from.
    /// For undirected graphs, from_node and to_node have the same meaning.
    fn from_node(&self) -> usize;
    /// Index of a node this edge goes to.
    /// For undirected graphs, from_node and to_node have the same meaning.
    fn to_node(&self) -> usize;
}

/// An edge that might be reversed easily.
pub trait ReversibleEdge: Edge {
    fn reverse(self) -> Self;
}

#[derive(Debug, Clone, PartialEq)]
pub struct GenericEdge {
    from: usize,
    to: usize,
}

impl GenericEdge {
    pub fn new(from: usize, to: usize) -> Self {
        Self {
            from,
            to
        }
    }
}

impl From<(usize, usize)> for GenericEdge {
    fn from(value: (usize, usize)) -> Self {
        Self {
            from: value.0,
            to: value.1
        }
    }
}

impl Edge for GenericEdge {
    fn from_node(&self) -> usize {
        self.from
    }

    fn to_node(&self) -> usize {
        self.to
    }

}

impl ReversibleEdge for GenericEdge {
    fn reverse(mut self) -> Self {
        (self.from, self.to) = (self.to, self.from);
        self
    }
}


/// A directed graph that owns nodes and edges of
/// specific types given by generics.
#[derive(Debug, Clone, PartialEq)]
pub struct GenericDirectedGraph<T, TEdge: Edge>
{
    nodes: Vec<T>,
    edges: Vec<TEdge>,
    node_edges: Vec<Vec<usize>>,
    reverse_node_edges: Vec<Vec<usize>>,
}

impl<T, TEdge: Edge> GenericDirectedGraph<T, TEdge> {
    pub fn new(nodes: Vec<T>) -> Self {
        let nodes_len = nodes.len();
        Self {
            nodes,
            edges: vec![],
            node_edges: vec![vec![]; nodes_len],
            reverse_node_edges: vec![vec![]; nodes_len],
        }
    }

    pub fn add_generic_edge(&mut self, edge: TEdge) -> usize {
        let idx = self.edges.len();

        self.node_edges[edge.from_node()].push(idx);
        self.reverse_node_edges[edge.to_node()].push(idx);
        self.edges.push(edge);

        idx
    }

    pub fn decompose(self) -> Vec<T> {
        self.nodes
    }
}

impl<T, TEdge: ReversibleEdge> GenericDirectedGraph<T, TEdge> {
    pub fn reverse(mut self) -> Self {
        (self.node_edges, self.reverse_node_edges) =
            (self.reverse_node_edges, self.node_edges);

        self.edges = self.edges
            .into_iter()
            .map(|edge| edge.reverse())
            .collect();

        self
    }
}

impl<T, TEdge: Edge + From<(usize, usize)>> GenericDirectedGraph<T, TEdge> {
    pub fn add_edge(&mut self, from: usize, to: usize) -> usize {
        let edge = (from, to).into();
        self.add_generic_edge(edge)
    }
}

impl<T, TEdge: Edge> Graph for GenericDirectedGraph<T, TEdge> {
    type Node = T;
    type Edge = TEdge;

    fn nodes(&self) -> impl Iterator<Item = &T> {
        self.nodes.iter()
    }

    fn edges(&self) -> impl Iterator<Item = &TEdge> {
        self.edges.iter()
    }

    fn neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.node_edges.get(node)
            .map(|edges| edges.iter()
                 .map(|i| self.edges[*i].to_node()))
    }

    fn reverse_neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.reverse_node_edges.get(node)
            .map(|edges| edges.iter()
                 .map(|i| self.edges[*i].from_node()))
    }

    fn edges_of_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        let reverse_edges = self.reverse_node_edges.get(node)?;

        self.node_edges.get(node)
            .map(|edges|
                 edges.iter()
                 .chain(reverse_edges.iter())
                 .map(|i| *i))
    }
}

impl<T, TEdge: Edge> MutGraph for GenericDirectedGraph<T, TEdge> {
    fn nodes_mut(&mut self) -> impl Iterator<Item = &mut Self::Node> {
        self.nodes.iter_mut()
    }

    fn edges_mut(&mut self) -> impl Iterator<Item = &mut Self::Edge> {
        self.edges.iter_mut()
    }
}

/// An undirected graph that owns nodes and edges of
/// specific types given by generics.
pub struct GenericGraph<T, TEdge: Edge> {
    nodes: Vec<T>,
    edges: Vec<TEdge>,
    node_neighbors: Vec<Vec<usize>>,
    node_edges: Vec<Vec<usize>>,
    adjacency_matrix: Option<Vec<Vec<Option<usize>>>>
}

impl<T, TEdge: Edge> GenericGraph<T, TEdge>
{
    pub fn new(nodes: Vec<T>, adjacency_matrix: bool) -> Self {
        let nodes_count = nodes.len();
        Self {
            nodes,
            edges: vec![],
            node_neighbors: vec![vec![]; nodes_count],
            node_edges: vec![vec![]; nodes_count],
            adjacency_matrix: if adjacency_matrix {
                Some(vec![vec![None; nodes_count]; nodes_count])
            } else {
                None
            }
        }
    }

    pub fn add_generic_edge(&mut self, edge: TEdge) -> usize {
        let idx = self.edges.len();

        if let Some(adjacency_matrix) = self.adjacency_matrix.as_deref_mut() {
            adjacency_matrix[edge.from_node()][edge.to_node()] = Some(idx);
            adjacency_matrix[edge.to_node()][edge.from_node()] = Some(idx);
        }

        self.node_edges[edge.from_node()].push(idx);
        self.node_edges[edge.to_node()].push(idx);
        self.node_neighbors[edge.from_node()].push(edge.to_node());
        self.node_neighbors[edge.to_node()].push(edge.from_node());
        self.edges.push(edge);

        idx
    }

    pub fn filter_edges(self, filter: impl Fn(usize, &TEdge) -> bool) -> Self {
        let keep_edges = self.edges
            .into_iter()
            .enumerate()
            .filter(|(i, e)| filter(*i, e))
            .map(|(_, e)| e);

        let mut new_graph = Self::new(self.nodes, self.adjacency_matrix.is_some());

        for edge in keep_edges {
            new_graph.add_generic_edge(edge);
        }

        new_graph
    }

    // NOTE: it's expected the edges will not reconnect, only the type will change.
    // from_node() and to_node() should stay the same!
    pub fn map_edges<TNewEdge: Edge>(self, map: impl Fn(TEdge) -> TNewEdge) -> GenericGraph<T, TNewEdge> {
        GenericGraph::<T, TNewEdge> {
            nodes: self.nodes,
            edges: self.edges.into_iter().map(|edge| map(edge)).collect(),
            node_neighbors: self.node_neighbors,
            node_edges: self.node_edges,
            adjacency_matrix: self.adjacency_matrix
        }
    }

    pub fn map_nodes<TNewNode>(self, map: impl Fn(T) -> TNewNode) -> GenericGraph<TNewNode, TEdge> {
        GenericGraph::<TNewNode, TEdge> {
            nodes: self.nodes.into_iter().map(|node| map(node)).collect(),
            edges: self.edges,
            node_neighbors: self.node_neighbors,
            node_edges: self.node_edges,
            adjacency_matrix: self.adjacency_matrix
        }
    }
}

impl<T, TEdge: Edge> Graph for GenericGraph<T, TEdge> {
    type Node = T;
    type Edge = TEdge;

    fn nodes(&self) -> impl Iterator<Item = &T> {
        self.nodes.iter()
    }

    fn edges(&self) -> impl Iterator<Item = &TEdge> {
        self.edges.iter()
    }

    fn neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.node_neighbors.get(node).map(|neighbors| neighbors.iter().map(|&node| node))
    }

    fn reverse_neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.node_neighbors.get(node).map(|neighbors| neighbors.iter().map(|&node| node))
    }

    fn edges_of_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.node_edges.get(node).map(|edges| edges.iter().map(|&edge| edge))
    }

    fn has_edge(&self, from: usize, to: usize) -> bool {
        if let Some(adjacency_matrix) = &self.adjacency_matrix {
            adjacency_matrix[from][to].is_some()
        } else {
            self.edges()
                .any(|edge| edge.from_node() == from && edge.to_node() == to)
        }
    }

    fn get_edge_between(&self, from: usize, to: usize) -> Option<usize> {
        if let Some(adjacency_matrix) = &self.adjacency_matrix {
            adjacency_matrix[from][to]
        } else {
            self.edges_of_idxs(from)
                .map(|edges| edges
                     .filter(|&edge| self.edge(edge).unwrap().to_node() == to)
                     .next())
                .flatten()
        }
    }
}

impl<T, TEdge: Edge> MutGraph for GenericGraph<T, TEdge> {
    fn nodes_mut(&mut self) -> impl Iterator<Item = &mut Self::Node> {
        self.nodes.iter_mut()
    }

    fn edges_mut(&mut self) -> impl Iterator<Item = &mut Self::Edge> {
        self.edges.iter_mut()
    }
}

pub struct ReversedEdge<'a, T: Edge> {
    edge: &'a T
}

impl<'a, T: Edge> ReversedEdge<'a, T> {
    pub fn new(edge: &'a T) -> Self {
        Self {
            edge
        }
    }
}

impl<'a, T: Edge> Edge for ReversedEdge<'a, T> {
    fn from_node(&self) -> usize {
        self.edge.to_node()
    }

    fn to_node(&self) -> usize {
        self.edge.from_node()
    }
}

/// A view on a graph that reverses all its
/// edges.
pub struct ReversedGraph<'a, T: Graph> {
    graph: &'a T,
    edges: Vec<ReversedEdge<'a, T::Edge>>
}

impl<'a, T: Graph> ReversedGraph<'a, T> {
    pub fn new(graph: &'a T) -> Self {
        Self {
            graph,
            edges: graph.edges()
                .map(|edge| ReversedEdge::new(edge))
                .collect()
        }
    }
}

impl<'a, T: Graph> Graph for ReversedGraph<'a, T> {
    type Node = T::Node;
    type Edge = ReversedEdge<'a, T::Edge>;

    fn nodes(&self) -> impl Iterator<Item = &Self::Node> {
        self.graph.nodes()
    }

    fn edges(&self) -> impl Iterator<Item = &Self::Edge> {
        self.edges.iter()
    }

    fn neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.graph.reverse_neighbor_idxs(node)
    }

    fn reverse_neighbor_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.graph.neighbor_idxs(node)
    }

    fn edges_of_idxs(&self, node: usize) -> Option<impl Iterator<Item = usize>> {
        self.graph.edges_of_idxs(node)
    }
}

/// Make a search out of the starting node, visiting every
/// node that can be visited from it. Denoting the
/// distances between the nodes and the parents that visited the
/// given node for reconstructing the shortest path.
pub fn breadth_first_search<TGraph>(
    graph: &TGraph,
    starting_node: usize,
) -> (Vec<Option<Distance>>, Vec<usize>)
where
    TGraph: Graph
{
    let nodes_len = graph.nodes().count();
    let mut distances = vec![None; nodes_len];
    let mut visited = vec![false; nodes_len];
    let mut parents = vec![0; nodes_len];

    let mut node_queue = VecDeque::with_capacity(nodes_len / 4);

    node_queue.push_back(starting_node);
    distances[starting_node] = Some(0);
    visited[starting_node] = true;

    while let Some(current) = node_queue.pop_front() {
        for neighbor in graph.neighbor_idxs(current).unwrap() {
            if visited[neighbor] {
                continue
            }

            visited[neighbor] = true;
            distances[neighbor] = Some(distances[current].unwrap() + 1);
            parents[neighbor] = current;

            node_queue.push_back(neighbor);
        }
    }

    (distances, parents)
}

/// Like breadth first search, but only look if a node
/// is reachable, do not figure out the distance, do not
/// figure out the shortest path.
pub fn breadth_first_reachable<TGraph>(
    graph: &TGraph,
    starting_node: usize,
) -> Vec<bool>
where
    TGraph: Graph
{
    let nodes_len = graph.nodes().count();
    let mut visited = vec![false; nodes_len];

    let mut node_queue = VecDeque::with_capacity(nodes_len / 4);

    node_queue.push_back(starting_node);
    visited[starting_node] = true;

    while let Some(current) = node_queue.pop_front() {
        for neighbor in graph.neighbor_idxs(current).unwrap() {
            if visited[neighbor] {
                continue
            }

            visited[neighbor] = true;

            node_queue.push_back(neighbor);
        }
    }

    visited
}

/// Figure out distance from each node to each node.
/// In case the node is unreachable, Distance::MAX is
/// in the matrix.
pub fn floyd_warshall<TNode, TEdge, TGraph>(
    graph: &TGraph
) -> Vec<Vec<Distance>>
where
    TEdge: Edge,
    TGraph: Graph<Node = TNode, Edge = TEdge>
{
    let nodes = graph.nodes().count();
    let mut distances = vec![vec![Distance::MAX; nodes]; nodes];

    for edge in graph.edges() {
        distances[edge.from_node()][edge.to_node()] = 1;
    }

    for v in 0..nodes {
        distances[v][v] = 0;
    }

    for k in 0..nodes {
        for i in 0..nodes {
            for j in 00..nodes {
                if distances[i][k] == Distance::MAX || distances[k][j] == Distance::MAX {
                    continue;
                }

                if distances[i][j] > distances[i][k] + distances[k][j] {
                    distances[i][j] = distances[i][k] + distances[k][j];
                }
            }
        }
    }

    distances
}


/// A generic representation of a minimum spanning
/// tree for cases where the graph might not be
/// fully connected, and thus it is possible the minimum
/// spanning tree will not be a single component.
#[derive(Clone, Debug, PartialEq)]
pub struct MinimumSpanningTree {
    // What component does node i belong to?
    pub components: UnionFind,
    // Edge indices in the tree
    pub edges: Vec<usize>,
}

impl MinimumSpanningTree {
    pub fn nodes_count(&self) -> usize {
        self.components.len()
    }

    pub fn components_count(&self) -> usize {
        self.nodes_count() - self.edges.len()
    }
}

/// Use the kruskal algorithm for finding the minimum spanning tree.
/// Take only edges filtered by selector as candidates for the spanning tree.
/// Initial minimum spanning tree can be passed, that should usually be a result
/// of prior run of this function with a different selector.
pub fn minimal_spanning_tree_kruskal<'a, TNode, TWeight, TEdge, TGraph>(
    graph: &TGraph,
    initial: Option<MinimumSpanningTree>,
    selector: impl Fn(&TEdge) -> bool
) -> MinimumSpanningTree
where
    TWeight: PartialOrd,
    TEdge: Edge + WeightedEdge<Cost = TWeight>,
    TGraph: Graph<Node = TNode, Edge = TEdge>
{
    // let separate_new_edges = initial.is_some();
    let nodes = graph.nodes().count();
    let mut initial_edge_selected = vec![false; graph.edges().count()];
    let mut current = if let Some(initial) = initial {
        for edge in &initial.edges {
            initial_edge_selected[*edge] = true;
        }

        initial
    } else {
        MinimumSpanningTree {
            components: UnionFind::make_set(nodes),
            edges: Vec::with_capacity(nodes - 1),
        }
    };

    let mut remaining_edges = graph.edges()
        .enumerate()
        .filter(|(i, e)| !initial_edge_selected[*i] && selector(e))
        .collect::<Vec<_>>();

    remaining_edges.sort_by(
        |a, b| a.1.cost().partial_cmp(&b.1.cost()).unwrap_or(Ordering::Less)
    );

    for (i, edge) in remaining_edges {
        // 1. does the edge connect two components?
        let (root_a, root_b) = {
            if current.components_count() == 1 {
                break;
            }

            let root_a = current.components.find(edge.from_node());
            let root_b = current.components.find(edge.to_node());

            if root_a == root_b {
                continue;
            }

            (root_a, root_b)
        };
        // 2. if so, use it and connect them
        current.components.union(root_a, root_b);
        current.edges.push(i);
    }

    current
}