~ruther/ctu-fee-eoa

ref: 600d9ae9104b7ad3ce1c9abcdc089418720a09db ctu-fee-eoa/codes/eoa_lib/src/crossover.rs -rw-r--r-- 4.6 KiB
600d9ae9 — Rutherther feat: add mutation and combined perturbations a month ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use std::marker::PhantomData;

use nalgebra::{allocator::Allocator, DefaultAllocator, Dim, OVector, Scalar, U1};
use rand::{Rng, RngCore};

use crate::{binary_string::BinaryString, pairing::ParentPairing, replacement::{EvaluatedPopulation, Population}};

pub trait Crossover {
    type Chromosome;
    type Out;

    fn crossover(
        &mut self,
        parents: &EvaluatedPopulation<Self::Chromosome, Self::Out>,
        pairs: impl Iterator<Item = ParentPairing>
    ) -> Population<Self::Chromosome>;
}

pub struct BinaryOnePointCrossover<D: Dim, TOutput> {
    _phantom1: PhantomData<D>,
    _phantom2: PhantomData<TOutput>,
    rng: Box<dyn RngCore>
}

impl<D: Dim, TOutput> BinaryOnePointCrossover<D, TOutput>
where
    DefaultAllocator: Allocator<D>
{
    pub fn new() -> Self {
        Self {
            rng: Box::new(rand::rng()),
            _phantom1: PhantomData,
            _phantom2: PhantomData,
        }
    }

    fn find_cross_point(&mut self, chromosome: &BinaryString<D>) -> usize {
        let (min, max) = (0, chromosome.vec.len());
        self.rng.random_range(min..max)
    }
}

// TODO: make common functions for ovector that will be used from both BinaryOnePointCrossover and OVectorOnePointCrossover
// for not repeating the code.

impl<D, TOutput> Crossover for BinaryOnePointCrossover<D, TOutput>
where
    D: Dim,
    DefaultAllocator: Allocator<D>
{
    type Chromosome = BinaryString<D>;
    type Out = TOutput;

    fn crossover(
        &mut self,
        population: &EvaluatedPopulation<Self::Chromosome, Self::Out>,
        pairs: impl Iterator<Item = ParentPairing>
    ) -> Population<Self::Chromosome> {

        let chromosome = &population.population[0].chromosome.vec;
        let len = population.population[0].chromosome.vec.len();
        let indices = OVector::<usize, D>::from_iterator_generic(chromosome.shape_generic().0, U1, 0..len);

        let mut offsprings = Vec::new();
        for pair in pairs {
            let (
                parent1,
                parent2
            ) = (&population.population[pair.0], &population.population[pair.1]);

            let (
                chromosome1,
                chromosome2
            ) = (&parent1.chromosome, &parent2.chromosome);

            let cross_point = self.find_cross_point(&population.population[0].chromosome);

            offsprings.push(BinaryString::from_ovector(
                chromosome1.vec.zip_zip_map(
                    &chromosome2.vec,
                    &indices,
                    |first, second, i| if i <= cross_point { first } else { second }
                )));
        }

        Population::from_vec(offsprings)
    }
}


pub struct OVectorOnePointCrossover<D: Dim, T: Scalar, TOutput> {
    _phantom1: PhantomData<D>,
    _phantom2: PhantomData<TOutput>,
    _phantom3: PhantomData<T>,
    rng: Box<dyn RngCore>
}

impl<D: Dim, T, TOutput> OVectorOnePointCrossover<D, T, TOutput>
where
    T: Scalar,
    DefaultAllocator: Allocator<D>
{
    pub fn new() -> Self {
        Self {
            rng: Box::new(rand::rng()),
            _phantom1: PhantomData,
            _phantom2: PhantomData,
            _phantom3: PhantomData,
        }
    }

    fn find_cross_point(&mut self, chromosome: &OVector<T, D>) -> usize {
        let (min, max) = (0, chromosome.len());
        self.rng.random_range(min..max)
    }
}

impl<D, T, TOutput> Crossover for OVectorOnePointCrossover<D, T, TOutput>
where
    T: Scalar,
    D: Dim,
    DefaultAllocator: Allocator<D>
{
    type Chromosome = OVector<T, D>;
    type Out = TOutput;

    fn crossover(
        &mut self,
        population: &EvaluatedPopulation<Self::Chromosome, Self::Out>,
        pairs: impl Iterator<Item = ParentPairing>
    ) -> Population<Self::Chromosome> {

        let chromosome = &population.population[0].chromosome;
        let len = population.population[0].chromosome.len();
        let indices = OVector::<usize, D>::from_iterator_generic(chromosome.shape_generic().0, U1, 0..len);

        let mut offsprings = Vec::new();
        for pair in pairs {
            let (
                parent1,
                parent2
            ) = (&population.population[pair.0], &population.population[pair.1]);

            let (
                chromosome1,
                chromosome2
            ) = (&parent1.chromosome, &parent2.chromosome);

            let cross_point = self.find_cross_point(&population.population[0].chromosome);

            offsprings.push(
                chromosome1.zip_zip_map(
                    &chromosome2,
                    &indices,
                    |first, second, i| if i <= cross_point { first } else { second }
                ));
        }

        Population::from_vec(offsprings)
    }
}