~ruther/ctu-fee-eoa

ref: 5f409074518fb0a5700af0bf1cd07a727bf8df17 ctu-fee-eoa/codes/eoa_lib/src/constraints.rs -rw-r--r-- 7.1 KiB
5f409074 — Rutherther refactor(tsp): Do not allocate in binary string fitness function a month ago
                                                                                
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use std::{collections::VecDeque, convert::Infallible, error::Error};

use thiserror::Error;

use crate::{comparison::BetterThanOperator, crossover::Crossover, evolution::EvolutionStats, fitness::FitnessFunction, pairing::Pairing, perturbation::PerturbationOperator, population::EvaluatedPopulation, replacement::Replacement, selection::Selection};

pub trait ConstraintFunction {
    type Chromosome;
    type Out;
    type Err: Error + 'static;

    fn evaluate(&self, chromosome: &Self::Chromosome) -> Result<Self::Out, Self::Err>;
    fn is_valid(&self, chromosome: &Self::Chromosome) -> Result<bool, Self::Err>;
}

pub struct LowerThanConstraintFunction<TChromosome, TOut> {
    fun: Box<dyn Fn(&TChromosome) -> TOut>
}

impl<TChromosome, TOut> LowerThanConstraintFunction<TChromosome, TOut> {
    pub fn new(fun: Box<dyn Fn(&TChromosome) -> TOut>) -> Self {
        Self {
            fun
        }
    }
}

impl<TChromosome, TOut: Default + PartialOrd> ConstraintFunction for LowerThanConstraintFunction<TChromosome, TOut> {
    type Chromosome = TChromosome;
    type Out = TOut;
    type Err = Infallible;

    fn evaluate(&self, chromosome: &Self::Chromosome) -> Result<Self::Out, Self::Err> {
        Ok((self.fun)(chromosome))
    }

    fn is_valid(&self, chromosome: &Self::Chromosome) -> Result<bool, Self::Err> {
        Ok(self.evaluate(chromosome)? <= Default::default())
    }
}

pub struct ConstrainedFitnessFunction<'a,
    TIn,
    TOut,
    TFitness: FitnessFunction<In = TIn, Out = TOut>,
    TConstraint: ConstraintFunction<Chromosome = TIn, Out = TOut>> {
    fitness: &'a TFitness,
    constraints: Vec<&'a TConstraint>,
    constraints_weight: TOut
}

#[derive(Error, Debug)]
pub enum ConstrainedFitnessErr<T: Error, U: Error> {
    #[error("An error that came from fitness function")]
    FitnessErr(T),
    #[error("An error that came from constraint function")]
    ConstraintErr(U)
}

impl <'a,
      TOut: std::ops::Mul<Output = TOut> + std::ops::AddAssign + Copy,
      TIn,
      TFitness: FitnessFunction<In = TIn, Out = TOut>,
      TConstraint: ConstraintFunction<Chromosome = TIn, Out = TOut>>
    FitnessFunction for ConstrainedFitnessFunction<'a, TIn, TOut, TFitness, TConstraint> {
    type In = TFitness::In;
    type Out = TOut;
    type Err = ConstrainedFitnessErr<TFitness::Err, TConstraint::Err>;

    fn fit(self: &Self, inp: &Self::In) -> Result<Self::Out, Self::Err> {
        let mut fit = match self.fitness.fit(inp) {
            Ok(fit) => fit,
            Err(err) =>
                return Err(ConstrainedFitnessErr::FitnessErr(err))
        };

        for &constraint in &self.constraints {
            fit += self.constraints_weight * match constraint.evaluate(inp) {
                Ok(constraint) => constraint,
                Err(err) =>
                    return Err(ConstrainedFitnessErr::ConstraintErr(err))
            };
        }

        Ok(fit)
    }
}

// TODO: currently these functions do recalculate the constraints for each chromosome.
// This is suboptimal. It could be solved by changing the result of fitness function to
// a tuple, where the second element of the tuple would be evaluations of the constraints.
// For this case, it would be the best if the number of constraints has been determined
// by a generic. Then, no dynamic allocation is necessary for each element.

pub fn evolve_constraint_penalty_weight_k
    <TChromosome: Clone,
     const DParents: usize,
     TSelection: Selection<TChromosome, f64>,
     TFitness: FitnessFunction<In = TChromosome, Out = f64>,
     TConstraint: ConstraintFunction<Chromosome = TChromosome, Out = f64>,
     TPairing: Pairing<DParents, Chromosome = TChromosome, Out = f64>,
     TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = f64>,
     TReplacement: Replacement<TChromosome, f64>,
     TPerturbation: PerturbationOperator<Chromosome = TChromosome>>(
        k: usize,
        n: usize,
        beta_1: f64,
        beta_2: f64,
        better_than: &impl BetterThanOperator<f64>
    ) -> impl FnMut(
        usize,
        &EvolutionStats<TChromosome, f64>,
        &EvaluatedPopulation<TChromosome, f64>,

        &mut ConstrainedFitnessFunction<TChromosome, f64, TFitness, TConstraint>,
        &mut TSelection,
        &mut TPairing,
        &mut TCrossover,
        &mut TPerturbation,
        &mut TReplacement
    ) {
        let mut k_iters_feasible = VecDeque::with_capacity(k);
        move |
        iteration,
        _,
        population,
        fitness,
        _,
        _,
        _,
        _,
        _| {
            let best_candidate = population.best_candidate(better_than);
            let feasible = fitness.constraints
                .iter()
                .any(|c| c.is_valid(&best_candidate.chromosome)
                     .expect("Can verify candidates"));

            // Change weight this iteration?
            if iteration % n == 0 {
                let all_feasible = k_iters_feasible.iter().all(|&f| f);

                fitness.constraints_weight *= if all_feasible {
                    1.0 / beta_1
                } else {
                    beta_2
                }
            }

            k_iters_feasible.push_back(feasible);

            if k_iters_feasible.len() > k {
                k_iters_feasible.pop_front();
            }
        }
}

pub fn evolve_constraint_penalty_weight_tau_target
    <TChromosome: Clone,
     const DParents: usize,
     TSelection: Selection<TChromosome, f64>,
     TFitness: FitnessFunction<In = TChromosome, Out = f64>,
     TConstraint: ConstraintFunction<Chromosome = TChromosome, Out = f64>,
     TPairing: Pairing<DParents, Chromosome = TChromosome, Out = f64>,
     TCrossover: Crossover<DParents, Chromosome = TChromosome, Out = f64>,
     TReplacement: Replacement<TChromosome, f64>,
     TPerturbation: PerturbationOperator<Chromosome = TChromosome>>(
        n: usize,
        c: f64,
        tau_target: f64,
        better_than: &impl BetterThanOperator<f64>
    ) -> impl FnMut(
        usize,
        &EvolutionStats<TChromosome, f64>,
        &EvaluatedPopulation<TChromosome, f64>,

        &mut ConstrainedFitnessFunction<TChromosome, f64, TFitness, TConstraint>,
        &mut TSelection,
        &mut TPairing,
        &mut TCrossover,
        &mut TPerturbation,
        &mut TReplacement
    ) {
        move |
        iteration,
        _,
        population,
        fitness,
        _,
        _,
        _,
        _,
        _| {
            if iteration % n != 0 {
                return;
            }

            let best_candidate = population.best_candidate(better_than);
            let count_feasible = population.population
                .iter()
                .filter(|individual| {
                    fitness.constraints
                        .iter()
                        .all(|f| f
                             .is_valid(&individual.chromosome)
                             .expect("Can verify candidates"))
                })
                .count();
            let tau = count_feasible as f64 / population.population.len() as f64;

            if tau > tau_target {
                fitness.constraints_weight *= 1.0 / c;
            } else {
                fitness.constraints_weight *= c;
            }
        }
}