~ruther/qmk_firmware

eb89a372ec8950a853aef9e2730339465dc3dc2a — Danny 7 years ago 1c6b932
Add BFO-9000 keyboard (#2807)

A keyboards/bfo9000/bfo9000.c => keyboards/bfo9000/bfo9000.c +1 -0
@@ 0,0 1,1 @@
#include "bfo9000.h"

A keyboards/bfo9000/bfo9000.h => keyboards/bfo9000/bfo9000.h +37 -0
@@ 0,0 1,37 @@
#ifndef BFO9000_H
#define BFO9000_H

#include "quantum.h"

#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
    #include <avr/io.h>
    #include <avr/interrupt.h>
#endif
#endif

#define LAYOUT( \
    L00, L01, L02, L03, L04, L05, L06, L07, L08, R00, R01, R02, R03, R04, R05, R06, R07, R08, \
    L10, L11, L12, L13, L14, L15, L16, L17, L18, R10, R11, R12, R13, R14, R15, R16, R17, R18, \
    L20, L21, L22, L23, L24, L25, L26, L27, L28, R20, R21, R22, R23, R24, R25, R26, R27, R28, \
    L30, L31, L32, L33, L34, L35, L36, L37, L38, R30, R31, R32, R33, R34, R35, R36, R37, R38, \
    L40, L41, L42, L43, L44, L45, L46, L47, L48, R40, R41, R42, R43, R44, R45, R46, R47, R48, \
    L50, L51, L52, L53, L54, L55, L56, L57, L58, R50, R51, R52, R53, R54, R55, R56, R57, R58 \
    ) \
    { \
        { L00, L01, L02, L03, L04, L05, L06, L07, L08 }, \
        { L10, L11, L12, L13, L14, L15, L16, L17, L18 }, \
        { L20, L21, L22, L23, L24, L25, L26, L27, L28 }, \
        { L30, L31, L32, L33, L34, L35, L36, L37, L38 }, \
        { L40, L41, L42, L43, L44, L45, L46, L47, L48 }, \
        { L50, L51, L52, L53, L54, L55, L56, L57, L58 }, \
        { R00, R01, R02, R03, R04, R05, R06, R07, R08 }, \
        { R10, R11, R12, R13, R14, R15, R16, R17, R18 }, \
        { R20, R21, R22, R23, R24, R25, R26, R27, R28 }, \
        { R30, R31, R32, R33, R34, R35, R36, R37, R38 }, \
        { R40, R41, R42, R43, R44, R45, R46, R47, R48 }, \
        { R50, R51, R52, R53, R54, R55, R56, R57, R58 } \
    }

#endif

A keyboards/bfo9000/config.h => keyboards/bfo9000/config.h +78 -0
@@ 0,0 1,78 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef CONFIG_H
#define CONFIG_H

#include "config_common.h"

/* USB Device descriptor parameter */
#define VENDOR_ID       0xCEEB
#define PRODUCT_ID      0x1169
#define DEVICE_VER      0x0100
#define MANUFACTURER    Keebio
#define PRODUCT         BFO-9000
#define DESCRIPTION     Really big split ortholinear keyboard

/* key matrix size */
// Rows are doubled-up
#define MATRIX_ROWS 12
#define MATRIX_COLS 9

// wiring of each half
#define MATRIX_ROW_PINS { D3, D2, D4, C6, D7, E6 }
#define MATRIX_COL_PINS { B5, B6, B2, B3, B1, F7, F6, F5, F4 }

/* Set 0 if debouncing isn't needed */
#define DEBOUNCING_DELAY 5

/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE

/* key combination for command */
#define IS_COMMAND() ( \
    keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)

/* ws2812 RGB LED */
#define RGB_DI_PIN B4
#define RGBLIGHT_TIMER
#define RGBLED_NUM 20    // Number of LEDs

/*
 * Feature disable options
 *  These options are also useful to firmware size reduction.
 */

/* disable debug print */
// #define NO_DEBUG

/* disable print */
// #define NO_PRINT

/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION


#endif

A keyboards/bfo9000/i2c.c => keyboards/bfo9000/i2c.c +162 -0
@@ 0,0 1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"

#ifdef USE_I2C

// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK)  =>  # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8

#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)

volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;

// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
  uint16_t lim = 0;
  while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
    lim++;

  // easier way, but will wait slightly longer
  // _delay_us(100);
}

// Setup twi to run at 100kHz
void i2c_master_init(void) {
  // no prescaler
  TWSR = 0;
  // Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
  // Check datasheets for more info.
  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}

// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
//          1 => error
uint8_t i2c_master_start(uint8_t address) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

  i2c_delay();

  // check that we started successfully
  if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
    return 1;

  TWDR = address;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
    return 1; // slave did not acknowledge
  else
    return 0; // success
}


// Finish the i2c transaction.
void i2c_master_stop(void) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t lim = 0;
  while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
    lim++;
}

// Write one byte to the i2c slave.
// returns 0 => slave ACK
//         1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  // check if the slave acknowledged us
  return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}

// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);

  i2c_delay();
  return TWDR;
}

void i2c_reset_state(void) {
  TWCR = 0;
}

void i2c_slave_init(uint8_t address) {
  TWAR = address << 0; // slave i2c address
  // TWEN  - twi enable
  // TWEA  - enable address acknowledgement
  // TWINT - twi interrupt flag
  // TWIE  - enable the twi interrupt
  TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}

ISR(TWI_vect);

ISR(TWI_vect) {
  uint8_t ack = 1;
  switch(TW_STATUS) {
    case TW_SR_SLA_ACK:
      // this device has been addressed as a slave receiver
      slave_has_register_set = false;
      break;

    case TW_SR_DATA_ACK:
      // this device has received data as a slave receiver
      // The first byte that we receive in this transaction sets the location
      // of the read/write location of the slaves memory that it exposes over
      // i2c.  After that, bytes will be written at slave_buffer_pos, incrementing
      // slave_buffer_pos after each write.
      if(!slave_has_register_set) {
        slave_buffer_pos = TWDR;
        // don't acknowledge the master if this memory loctaion is out of bounds
        if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
          ack = 0;
          slave_buffer_pos = 0;
        }
        slave_has_register_set = true;
      } else {
        i2c_slave_buffer[slave_buffer_pos] = TWDR;
        BUFFER_POS_INC();
      }
      break;

    case TW_ST_SLA_ACK:
    case TW_ST_DATA_ACK:
      // master has addressed this device as a slave transmitter and is
      // requesting data.
      TWDR = i2c_slave_buffer[slave_buffer_pos];
      BUFFER_POS_INC();
      break;

    case TW_BUS_ERROR: // something went wrong, reset twi state
      TWCR = 0;
    default:
      break;
  }
  // Reset everything, so we are ready for the next TWI interrupt
  TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

A keyboards/bfo9000/i2c.h => keyboards/bfo9000/i2c.h +49 -0
@@ 0,0 1,49 @@
#ifndef I2C_H
#define I2C_H

#include <stdint.h>

#ifndef F_CPU
#define F_CPU 16000000UL
#endif

#define I2C_READ 1
#define I2C_WRITE 0

#define I2C_ACK 1
#define I2C_NACK 0

#define SLAVE_BUFFER_SIZE 0x10

// i2c SCL clock frequency
#define SCL_CLOCK  400000L

extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);


static inline unsigned char i2c_start_read(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_READ);
}

static inline unsigned char i2c_start_write(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_WRITE);
}

// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);

#define i2c_read(ack)  (ack) ? i2c_readAck() : i2c_readNak();

#endif

A keyboards/bfo9000/keymaps/default/config.h => keyboards/bfo9000/keymaps/default/config.h +37 -0
@@ 0,0 1,37 @@
/*
This is the c configuration file for the keymap

Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef CONFIG_USER_H
#define CONFIG_USER_H

#include "config_common.h"

/* Use I2C or Serial, not both */

#define USE_SERIAL
// #define USE_I2C

/* Select hand configuration */

#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS

#endif

A keyboards/bfo9000/keymaps/default/keymap.c => keyboards/bfo9000/keymaps/default/keymap.c +19 -0
@@ 0,0 1,19 @@
#include QMK_KEYBOARD_H

#define _BASE 0

// Fillers to make layering more clear
#define _______ KC_TRNS
#define XXXXXXX KC_NO

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {

[_BASE] = LAYOUT( \
    KC_ESC,  KC_VOLU, KC_ESC,  KC_F1,   KC_F2,   KC_F3,   KC_F4,   KC_F5,   KC_F6,         KC_F5,   KC_F6,   KC_F7,   KC_F8,   KC_F9,   KC_F10,  KC_F11,  KC_F12,  KC_DEL, \
    KC_HOME, KC_VOLD, KC_GRV,  KC_1,    KC_2,    KC_3,    KC_4,    KC_5,    KC_6,          KC_5,    KC_6,    KC_7,    KC_8,    KC_9,    KC_0,    KC_MINS, KC_EQL,  KC_BSPC, \
    KC_END,  KC_TAB,  KC_TAB,  KC_Q,    KC_W,    KC_E,    KC_R,    KC_T,    KC_Y,          KC_T,    KC_Y,    KC_U,    KC_I,    KC_O,    KC_P,    KC_LBRC, KC_RBRC, KC_BSLS, \
    KC_PGUP, KC_CAPS, KC_LCTL, KC_A,    KC_S,    KC_D,    KC_F,    KC_G,    KC_H,          KC_G,    KC_H,    KC_J,    KC_K,    KC_L,    KC_SCLN, KC_QUOT, KC_ENT,  KC_ENT, \
    KC_PGDN, KC_UP,   KC_LSFT, KC_Z,    KC_X,    KC_C,    KC_V,    KC_B,    KC_N,          KC_B,    KC_N,    KC_M,    KC_COMM, KC_DOT,  KC_SLSH, KC_RSFT, KC_UP,   XXXXXXX, \
    KC_LEFT, KC_DOWN, KC_RGHT, KC_LCTL, KC_LALT, KC_LGUI, KC_SPC,  KC_SPC,  KC_ENT,        KC_BSPC, KC_SPC,  KC_SPC,  KC_RGUI, KC_RALT, KC_RCTL, KC_LEFT, KC_DOWN, KC_RGHT \
)
};

A keyboards/bfo9000/matrix.c => keyboards/bfo9000/matrix.c +342 -0
@@ 0,0 1,342 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#ifdef USE_I2C
// provides memcpy for copying TWI slave buffer
// #include <string.h>
#endif
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "pro_micro.h"
#include "config.h"

#ifdef USE_I2C
#  include "i2c.h"
#else // USE_SERIAL
#  include "serial.h"
#endif

#ifndef DEBOUNCE
#  define DEBOUNCE	5
#endif

#define ERROR_DISCONNECT_COUNT 5

static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);


__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

void matrix_init(void)
{
    debug_enable = true;
    debug_matrix = true;
    debug_mouse = true;
    // initialize row and col
    unselect_rows();
    init_cols();

    TX_RX_LED_INIT;

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }

    matrix_init_quantum();
}

uint8_t _matrix_scan(void)
{
    // Right hand is stored after the left in the matrix so, we need to offset it
    int offset = isLeftHand ? 0 : (ROWS_PER_HAND);

    for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
        select_row(i);
        _delay_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        if (matrix_debouncing[i+offset] != cols) {
            matrix_debouncing[i+offset] = cols;
            debouncing = DEBOUNCE;
        }
        unselect_rows();
    }

    if (debouncing) {
        if (--debouncing) {
            _delay_ms(1);
        } else {
            for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
                matrix[i+offset] = matrix_debouncing[i+offset];
            }
        }
    }

    return 1;
}

#ifdef USE_I2C

// Get rows from other half over i2c
int i2c_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) goto i2c_error;

    // start of matrix stored at 0x00
    err = i2c_master_write(0x00);
    if (err) goto i2c_error;

    // Start read
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
    if (err) goto i2c_error;

    if (!err) {
        /*
        // read from TWI byte-by-byte into matrix_row_t memory space
        size_t i;
        for (i = 0; i < SLAVE_BUFFER_SIZE-1; ++i) {
            *((uint8_t*)&matrix[slaveOffset]+i) = i2c_master_read(I2C_ACK);
        }
        // last byte to be read / end of chunk
        *((uint8_t*)&matrix[slaveOffset]+i) = i2c_master_read(I2C_NACK);
        */

        // kludge for column #9: unpack bits for keys (2,9) and (3,9) from (1,7) and (1,8)
        // i2c_master_read(I2C_ACK);
        matrix[slaveOffset+0] = i2c_master_read(I2C_ACK);
        // i2c_master_read(I2C_ACK);
        matrix[slaveOffset+1] = (matrix_row_t)i2c_master_read(I2C_ACK)\
                                | (matrix[slaveOffset+0]&0x40U)<<2;
        // i2c_master_read(I2C_ACK);
        matrix[slaveOffset+2] = (matrix_row_t)i2c_master_read(I2C_NACK)\
                                | (matrix[slaveOffset+0]&0x80U)<<1;
        // clear highest two bits on row 1, where the col9 bits were transported
        matrix[slaveOffset+0] &= 0x3F;

        i2c_master_stop();
    } else {
i2c_error: // the cable is disconnected, or something else went wrong
        i2c_reset_state();
        return err;
    }

    return 0;
}

#else // USE_SERIAL

int serial_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    if (serial_update_buffers()) {
        return 1;
    }

    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        matrix[slaveOffset+i] = serial_slave_buffer[i];
    }
    return 0;
}
#endif

uint8_t matrix_scan(void)
{
    int ret = _matrix_scan();



#ifdef USE_I2C
    if( i2c_transaction() ) {
#else // USE_SERIAL
    if( serial_transaction() ) {
#endif
        // turn on the indicator led when halves are disconnected
        TXLED1;

        error_count++;

        if (error_count > ERROR_DISCONNECT_COUNT) {
            // reset other half if disconnected
            int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
            for (int i = 0; i < ROWS_PER_HAND; ++i) {
                matrix[slaveOffset+i] = 0;
            }
        }
    } else {
        // turn off the indicator led on no error
        TXLED0;
        error_count = 0;
    }
    matrix_scan_quantum();
    return ret;
}

void matrix_slave_scan(void) {
    _matrix_scan();

    int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;

#ifdef USE_I2C
    // SLAVE_BUFFER_SIZE is from i2c.h
    // (MATRIX_ROWS/2*sizeof(matrix_row_t))
    // memcpy((void*)i2c_slave_buffer, (const void*)&matrix[offset], (ROWS_PER_HAND*sizeof(matrix_row_t)));

    // kludge for column #9: put bits for keys (2,9) and (3,9) into (1,7) and (1,8)
    i2c_slave_buffer[0] = (uint8_t)(matrix[offset+0])\
                          | (matrix[offset+1]&0x100U)>>2\
                          | (matrix[offset+2]&0x100U)>>1;
    i2c_slave_buffer[1] = (uint8_t)(matrix[offset+1]);
    i2c_slave_buffer[2] = (uint8_t)(matrix[offset+2]);
    // note: looks like a possible operator-precedence bug here, in last version?
    /*
    i2c_slave_buffer[1] = (uint8_t)matrix[offset+0];
    i2c_slave_buffer[2] = (uint8_t)(matrix[offset+1]>>8);
    i2c_slave_buffer[3] = (uint8_t)(matrix[offset+1]>>8);
    i2c_slave_buffer[4] = (uint8_t)(matrix[offset+2]>>8);
    i2c_slave_buffer[5] = (uint8_t)matrix[offset+2];
    */
#else // USE_SERIAL
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        serial_slave_buffer[i] = matrix[offset+i];
    }
#endif
}

bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print("\nr/c 0123456789ABCDEF\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        phex(row); print(": ");
        pbin_reverse16(matrix_get_row(row));
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += bitpop16(matrix[i]);
    }
    return count;
}

static void  init_cols(void)
{
    for(int x = 0; x < MATRIX_COLS; x++) {
        _SFR_IO8((col_pins[x] >> 4) + 1) &=  ~_BV(col_pins[x] & 0xF);
        _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
    }
}

static matrix_row_t read_cols(void)
{
    matrix_row_t result = 0;
    for(int x = 0; x < MATRIX_COLS; x++) {
        result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
    }
    return result;
}

static void unselect_rows(void)
{
    for(int x = 0; x < ROWS_PER_HAND; x++) {
        _SFR_IO8((row_pins[x] >> 4) + 1) &=  ~_BV(row_pins[x] & 0xF);
        _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
    }
}

static void select_row(uint8_t row)
{
    _SFR_IO8((row_pins[row] >> 4) + 1) |=  _BV(row_pins[row] & 0xF);
    _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

A keyboards/bfo9000/readme.md => keyboards/bfo9000/readme.md +18 -0
@@ 0,0 1,18 @@
BFO-9000
========

A split full-size ortholinear keyboard made and sold by Keebio. Each half is a 6x9 arrangement, with breakable pieces to allow the number of rows to be customized between 4 to 6, and the number of columns to be between 7 to 9. [More info at Keebio](https://keeb.io).

Keyboard Maintainer: [Bakingpy/nooges](https://github.com/nooges)  
Hardware Supported: Pro Micro  
Hardware Availability: [Keebio](https://keeb.io)  

Make example for this keyboard (after setting up your build environment):

    make bfo9000:default

Example of flashing this keyboard:

    make bfo9000:default:avrdude

See [build environment setup](https://docs.qmk.fm/build_environment_setup.html) then the [make instructions](https://docs.qmk.fm/make_instructions.html) for more information.

A keyboards/bfo9000/rules.mk => keyboards/bfo9000/rules.mk +70 -0
@@ 0,0 1,70 @@
SRC += matrix.c \
	   i2c.c \
	   split_util.c \
	   serial.c

# MCU name
#MCU = at90usb1287
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Bootloader
#     This definition is optional, and if your keyboard supports multiple bootloaders of
#     different sizes, comment this out, and the correct address will be loaded 
#     automatically (+60). See bootloader.mk for all options.
BOOTLOADER = caterina

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Build Options
#   change to "no" to disable the options, or define them in the Makefile in
#   the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE = no       # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes       # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes       # Audio control and System control(+450)
CONSOLE_ENABLE = no         # Console for debug(+400)
COMMAND_ENABLE = yes        # Commands for debug and configuration
NKRO_ENABLE = no            # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality
MIDI_ENABLE = no            # MIDI controls
AUDIO_ENABLE = no           # Audio output on port C6
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no       # Enable WS2812 RGB underlight.  Do not enable this with audio at the same time.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no    # Breathing sleep LED during USB suspend

CUSTOM_MATRIX = yes

A keyboards/bfo9000/serial.c => keyboards/bfo9000/serial.c +230 -0
@@ 0,0 1,230 @@
/*
 * WARNING: be careful changing this code, it is very timing dependent
 */

#ifndef F_CPU
#define F_CPU 16000000
#endif

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdbool.h>
#include "serial.h"

#ifdef USE_SERIAL

// Serial pulse period in microseconds. Its probably a bad idea to lower this
// value.
#define SERIAL_DELAY 24

matrix_row_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
matrix_row_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};

#define ROW_MASK (((matrix_row_t)0-1)>>(8*sizeof(matrix_row_t)-MATRIX_COLS))

#define SLAVE_DATA_CORRUPT (1<<0)
volatile uint8_t status = 0;

inline static
void serial_delay(void) {
  _delay_us(SERIAL_DELAY);
}

inline static
void serial_output(void) {
  SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}

// make the serial pin an input with pull-up resistor
inline static
void serial_input(void) {
  SERIAL_PIN_DDR  &= ~SERIAL_PIN_MASK;
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

inline static
matrix_row_t serial_read_pin(void) {
  return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}

inline static
void serial_low(void) {
  SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}

inline static
void serial_high(void) {
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

void serial_master_init(void) {
  serial_output();
  serial_high();
}

void serial_slave_init(void) {
  serial_input();

  // Enable INT0
  EIMSK |= _BV(INT0);
  // Trigger on falling edge of INT0
  EICRA &= ~(_BV(ISC00) | _BV(ISC01));
}

// Used by the master to synchronize timing with the slave.
static
void sync_recv(void) {
  serial_input();
  // This shouldn't hang if the slave disconnects because the
  // serial line will float to high if the slave does disconnect.
  while (!serial_read_pin());
  serial_delay();
}

// Used by the slave to send a synchronization signal to the master.
static
void sync_send(void) {
  serial_output();

  serial_low();
  serial_delay();

  serial_high();
}

// Reads a byte from the serial line
static
matrix_row_t serial_read_byte(void) {
  matrix_row_t byte = 0;
  serial_input();
  for ( uint8_t i = 0; i < MATRIX_COLS; ++i) {
    byte = (byte << 1) | serial_read_pin();
    serial_delay();
    _delay_us(1);
  }

  return byte;
}

// Sends a byte with MSB ordering
static
void serial_write_byte(matrix_row_t data) {
  matrix_row_t b = MATRIX_COLS;
  serial_output();
  while( b-- ) {
    if(data & (1UL << b)) {
      serial_high();
    } else {
      serial_low();
    }
    serial_delay();
  }
}

// interrupt handle to be used by the slave device
ISR(SERIAL_PIN_INTERRUPT) {
  sync_send();

  matrix_row_t checksum = 0;
  for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
    serial_write_byte(serial_slave_buffer[i]);
    sync_send();
    checksum += ROW_MASK & serial_slave_buffer[i];
  }
  serial_write_byte(checksum);
  sync_send();

  // wait for the sync to finish sending
  serial_delay();

  // read the middle of pulses
  _delay_us(SERIAL_DELAY/2);

  matrix_row_t checksum_computed = 0;
  for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
    serial_master_buffer[i] = serial_read_byte();
    sync_send();
    checksum_computed += ROW_MASK & serial_master_buffer[i];
  }
  matrix_row_t checksum_received = serial_read_byte();
  sync_send();

  serial_input(); // end transaction

  if ( checksum_computed != checksum_received ) {
    status |= SLAVE_DATA_CORRUPT;
  } else {
    status &= ~SLAVE_DATA_CORRUPT;
  }
}

inline
bool serial_slave_DATA_CORRUPT(void) {
  return status & SLAVE_DATA_CORRUPT;
}

// Copies the serial_slave_buffer to the master and sends the
// serial_master_buffer to the slave.
//
// Returns:
// 0 => no error
// 1 => slave did not respond
int serial_update_buffers(void) {
  // this code is very time dependent, so we need to disable interrupts
  cli();

  // signal to the slave that we want to start a transaction
  serial_output();
  serial_low();
  _delay_us(1);

  // wait for the slaves response
  serial_input();
  serial_high();
  _delay_us(SERIAL_DELAY);

  // check if the slave is present
  if (serial_read_pin()) {
    // slave failed to pull the line low, assume not present
    sei();
    return 1;
  }

  // if the slave is present syncronize with it
  sync_recv();

  matrix_row_t checksum_computed = 0;
  // receive data from the slave
  for (int i = 0; i < SERIAL_SLAVE_BUFFER_LENGTH; ++i) {
    serial_slave_buffer[i] = serial_read_byte();
    sync_recv();
    checksum_computed += ROW_MASK & serial_slave_buffer[i];
  }
  matrix_row_t checksum_received = serial_read_byte();
  sync_recv();

  if (checksum_computed != checksum_received) {
    sei();
    return 1;
  }

  matrix_row_t checksum = 0;
  // send data to the slave
  for (int i = 0; i < SERIAL_MASTER_BUFFER_LENGTH; ++i) {
    serial_write_byte(serial_master_buffer[i]);
    sync_recv();
    checksum += ROW_MASK & serial_master_buffer[i];
  }
  serial_write_byte(checksum);
  sync_recv();

  // always, release the line when not in use
  serial_output();
  serial_high();

  sei();
  return 0;
}

#endif

A keyboards/bfo9000/serial.h => keyboards/bfo9000/serial.h +27 -0
@@ 0,0 1,27 @@
#ifndef MY_SERIAL_H
#define MY_SERIAL_H

#include "config.h"
#include "matrix.h"
#include <stdbool.h>

/* TODO:  some defines for interrupt setup */
#define SERIAL_PIN_DDR DDRD
#define SERIAL_PIN_PORT PORTD
#define SERIAL_PIN_INPUT PIND
#define SERIAL_PIN_MASK _BV(PD0)
#define SERIAL_PIN_INTERRUPT INT0_vect

#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
#define SERIAL_MASTER_BUFFER_LENGTH 1

// Buffers for master - slave communication
extern volatile matrix_row_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
extern volatile matrix_row_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];

void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(void);
bool serial_slave_data_corrupt(void);

#endif

A keyboards/bfo9000/split_util.c => keyboards/bfo9000/split_util.c +86 -0
@@ 0,0 1,86 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#include "timer.h"

#ifdef USE_I2C
#  include "i2c.h"
#else
#  include "serial.h"
#endif

volatile bool isLeftHand = true;

static void setup_handedness(void) {
  #ifdef EE_HANDS
    isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
  #else
    // I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
    #if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
      isLeftHand = !has_usb();
    #else
      isLeftHand = has_usb();
    #endif
  #endif
}

static void keyboard_master_setup(void) {
#ifdef USE_I2C
    i2c_master_init();
#ifdef SSD1306OLED
    matrix_master_OLED_init();
#endif
#else
    serial_master_init();
#endif
}

static void keyboard_slave_setup(void) {
  timer_init();
#ifdef USE_I2C
    i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
    serial_slave_init();
#endif
}

bool has_usb(void) {
   USBCON |= (1 << OTGPADE); //enables VBUS pad
   _delay_us(5);
   return (USBSTA & (1<<VBUS));  //checks state of VBUS
}

void split_keyboard_setup(void) {
   setup_handedness();

   if (has_usb()) {
      keyboard_master_setup();
   } else {
      keyboard_slave_setup();
   }
   sei();
}

void keyboard_slave_loop(void) {
   matrix_init();

   while (1) {
      matrix_slave_scan();
   }
}

// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
    split_keyboard_setup();

    if (!has_usb()) {
        keyboard_slave_loop();
    }
}

A keyboards/bfo9000/split_util.h => keyboards/bfo9000/split_util.h +20 -0
@@ 0,0 1,20 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H

#include <stdbool.h>
#include "eeconfig.h"

#define SLAVE_I2C_ADDRESS           0x32

extern volatile bool isLeftHand;

// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);

void split_keyboard_setup(void);
bool has_usb(void);
void keyboard_slave_loop(void);

void matrix_master_OLED_init (void);

#endif