~ruther/qmk_firmware

d707738616c140f8d9c8eded7b64e5fc806f4b24 — Jack Humbert 9 years ago 96f44e1
i2c working
D keyboards/lets-split/lets-split.h => keyboards/lets-split/lets-split.h +0 -4
@@ 1,4 0,0 @@
#include "quantum.h"
#include <avr/wdt.h>

void promicro_bootloader_jmp(bool program);
\ No newline at end of file

R keyboards/lets-split/Makefile => keyboards/lets_split/Makefile +5 -1
@@ 1,4 1,6 @@

SRC += matrix.c \
	   i2c.c \
	   split_util.c

# MCU name
#MCU = at90usb1287


@@ 68,6 70,8 @@ RGBLIGHT_ENABLE ?= no        # Enable WS2812 RGB underlight.  Do not enable this
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE ?= no    # Breathing sleep LED during USB suspend

CUSTOM_MATRIX = yes

ifndef QUANTUM_DIR
	include ../../Makefile
endif
\ No newline at end of file

R keyboards/lets-split/config.h => keyboards/lets_split/config.h +8 -2
@@ 29,12 29,18 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#define DESCRIPTION     A split keyboard for the cheap makers

/* key matrix size */
#define MATRIX_ROWS 4
#define MATRIX_ROWS 8
#define MATRIX_COLS 6

#define MATRIX_ROW_PINS { B5, B4, E6, D7, }
// wiring of each half
#define MATRIX_ROW_PINS { B5, B4, E6, D7 }
#define MATRIX_COL_PINS { F4, F5, F6, F7, B1, B3 }

#define USE_I2C

// #define I2C_MASTER_LEFT
#define I2C_MASTER_RIGHT

/* COL2ROW or ROW2COL */
#define DIODE_DIRECTION COL2ROW


A keyboards/lets_split/i2c.c => keyboards/lets_split/i2c.c +159 -0
@@ 0,0 1,159 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"

// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK)  =>  # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8

#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)

volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;

// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
  uint16_t lim = 0;
  while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
    lim++;

  // easier way, but will wait slightly longer
  // _delay_us(100);
}

// Setup twi to run at 100kHz
void i2c_master_init(void) {
  // no prescaler
  TWSR = 0;
  // Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
  // Check datasheets for more info.
  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}

// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
//          1 => error
uint8_t i2c_master_start(uint8_t address) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

  i2c_delay();

  // check that we started successfully
  if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
    return 1;

  TWDR = address;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
    return 1; // slave did not acknowledge
  else
    return 0; // success
}


// Finish the i2c transaction.
void i2c_master_stop(void) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t lim = 0;
  while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
    lim++;
}

// Write one byte to the i2c slave.
// returns 0 => slave ACK
//         1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  // check if the slave acknowledged us
  return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}

// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);

  i2c_delay();
  return TWDR;
}

void i2c_reset_state(void) {
  TWCR = 0;
}

void i2c_slave_init(uint8_t address) {
  TWAR = address << 0; // slave i2c address
  // TWEN  - twi enable
  // TWEA  - enable address acknowledgement
  // TWINT - twi interrupt flag
  // TWIE  - enable the twi interrupt
  TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}

ISR(TWI_vect);

ISR(TWI_vect) {
  uint8_t ack = 1;
  switch(TW_STATUS) {
    case TW_SR_SLA_ACK:
      // this device has been addressed as a slave receiver
      slave_has_register_set = false;
      break;

    case TW_SR_DATA_ACK:
      // this device has received data as a slave receiver
      // The first byte that we receive in this transaction sets the location
      // of the read/write location of the slaves memory that it exposes over
      // i2c.  After that, bytes will be written at slave_buffer_pos, incrementing
      // slave_buffer_pos after each write.
      if(!slave_has_register_set) {
        slave_buffer_pos = TWDR;
        // don't acknowledge the master if this memory loctaion is out of bounds
        if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
          ack = 0;
          slave_buffer_pos = 0;
        }
        slave_has_register_set = true;
      } else {
        i2c_slave_buffer[slave_buffer_pos] = TWDR;
        BUFFER_POS_INC();
      }
      break;

    case TW_ST_SLA_ACK:
    case TW_ST_DATA_ACK:
      // master has addressed this device as a slave transmitter and is
      // requesting data.
      TWDR = i2c_slave_buffer[slave_buffer_pos];
      BUFFER_POS_INC();
      break;

    case TW_BUS_ERROR: // something went wrong, reset twi state
      TWCR = 0;
    default:
      break;
  }
  // Reset everything, so we are ready for the next TWI interrupt
  TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}

A keyboards/lets_split/i2c.h => keyboards/lets_split/i2c.h +31 -0
@@ 0,0 1,31 @@
#ifndef I2C_H
#define I2C_H

#include <stdint.h>

#ifndef F_CPU
#define F_CPU 16000000UL
#endif

#define I2C_READ 1
#define I2C_WRITE 0

#define I2C_ACK 1
#define I2C_NACK 0

#define SLAVE_BUFFER_SIZE 0x10

// i2c SCL clock frequency
#define SCL_CLOCK  100000L

extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);

#endif

R keyboards/lets-split/keymaps/default/keymap.c => keyboards/lets_split/keymaps/default/keymap.c +7 -7
@@ 1,4 1,4 @@
#include "lets-split.h"
#include "lets_split.h"
#include "action_layer.h"

#define BASE 0


@@ 14,12 14,12 @@ enum preonic_keycodes {

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {

[BASE] = {
  {KC_TAB,  KC_Q,    KC_W,    KC_E,    KC_R,    KC_T     },
  {KC_ESC,  KC_A,    KC_S,    KC_D,    KC_F,    KC_G     },
  {KC_LSFT, KC_Z,    KC_X,    KC_C,    KC_V,    KC_B     },
  {KC_IDK,  KC_LCTL, KC_LALT, KC_LGUI, KC_SPC,  PM_RESET }
}
[BASE] = KEYMAP(
  KC_TAB,  KC_Q,    KC_W,    KC_E,    KC_R,    KC_T,        KC_Y,    KC_U,    KC_I,    KC_O,    KC_P,    KC_BSPC, \
  KC_ESC,  KC_A,    KC_S,    KC_D,    KC_F,    KC_G,        KC_H,    KC_J,    KC_K,    KC_L,    KC_SCLN, KC_QUOT, \
  KC_LSFT, KC_Z,    KC_X,    KC_C,    KC_V,    KC_B,        KC_N,    KC_M,    KC_COMM, KC_DOT,  KC_SLSH, KC_ENT, \
  KC_IDK,  KC_LCTL, KC_LALT, KC_LGUI, PM_RESET,KC_SPC,      KC_SPC,  PM_RESET,KC_LEFT, KC_DOWN, KC_UP,   KC_RGHT \
)

};


R keyboards/lets-split/lets-split.c => keyboards/lets_split/lets_split.c +7 -7
@@ 1,4 1,4 @@
#include "lets-split.h"
#include "lets_split.h"

#ifdef AUDIO_ENABLE
    float tone_startup[][2] = SONG(STARTUP_SOUND);


@@ 12,13 12,13 @@ void matrix_init_kb(void) {
        PLAY_NOTE_ARRAY(tone_startup, false, 0);
    #endif

    // green led on
    DDRD |= (1<<5);
    PORTD &= ~(1<<5);
    // // green led on
    // DDRD |= (1<<5);
    // PORTD &= ~(1<<5);

    // orange led on
    DDRB |= (1<<0);
    PORTB &= ~(1<<0);
    // // orange led on
    // DDRB |= (1<<0);
    // PORTB &= ~(1<<0);

	matrix_init_user();
};

A keyboards/lets_split/lets_split.h => keyboards/lets_split/lets_split.h +21 -0
@@ 0,0 1,21 @@
#include "quantum.h"
#include <avr/wdt.h>

void promicro_bootloader_jmp(bool program);

#define KEYMAP( \
	k00, k01, k02, k03, k04, k05, k40, k41, k42, k43, k44, k45, \
	k10, k11, k12, k13, k14, k15, k50, k51, k52, k53, k54, k55, \
	k20, k21, k22, k23, k24, k25, k60, k61, k62, k63, k64, k65, \
	k30, k31, k32, k33, k34, k35, k70, k71, k72, k73, k74, k75 \
	) \
	{ \
		{ k00, k01, k02, k03, k04, k05 }, \
		{ k10, k11, k12, k13, k14, k15 }, \
		{ k20, k21, k22, k23, k24, k25 }, \
		{ k30, k31, k32, k33, k34, k35 }, \
		{ k40, k41, k42, k43, k44, k45 }, \
		{ k50, k51, k52, k53, k54, k55 }, \
		{ k60, k61, k62, k63, k64, k65 }, \
		{ k70, k71, k72, k73, k74, k75 } \
	}
\ No newline at end of file

A keyboards/lets_split/matrix.c => keyboards/lets_split/matrix.c +310 -0
@@ 0,0 1,310 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "i2c.h"
#include "split_util.h"
#include "pro_micro.h"
#include "config.h"

#ifndef DEBOUNCE
#   define DEBOUNCE	5
#endif

#define ERROR_DISCONNECT_COUNT 5

static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);

__attribute__ ((weak))
void matrix_init_quantum(void) {
    matrix_init_kb();
}

__attribute__ ((weak))
void matrix_scan_quantum(void) {
    matrix_scan_kb();
}

__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

void matrix_init(void)
{
    debug_enable = true;
    debug_matrix = true;
    debug_mouse = true;
    // initialize row and col
    unselect_rows();
    init_cols();

    TX_RX_LED_INIT;

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }

    matrix_init_quantum();
}

uint8_t _matrix_scan(void)
{
    // Right hand is stored after the left in the matirx so, we need to offset it
    int offset = isLeftHand ? 0 : (ROWS_PER_HAND);

    for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
        select_row(i);
        _delay_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        if (matrix_debouncing[i+offset] != cols) {
            matrix_debouncing[i+offset] = cols;
            debouncing = DEBOUNCE;
        }
        unselect_rows();
    }

    if (debouncing) {
        if (--debouncing) {
            _delay_ms(1);
        } else {
            for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
                matrix[i+offset] = matrix_debouncing[i+offset];
            }
        }
    }

    return 1;
}

// Get rows from other half over i2c
int i2c_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) goto i2c_error;

    // start of matrix stored at 0x00
    err = i2c_master_write(0x00);
    if (err) goto i2c_error;

    // Start read
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
    if (err) goto i2c_error;

    if (!err) {
        int i;
        for (i = 0; i < ROWS_PER_HAND-1; ++i) {
            matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
        }
        matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
        i2c_master_stop();
    } else {
i2c_error: // the cable is disconnceted, or something else went wrong
        i2c_reset_state();
        return err;
    }

    return 0;
}

#ifndef USE_I2C
int serial_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    if (serial_update_buffers()) {
        return 1;
    }

    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        matrix[slaveOffset+i] = serial_slave_buffer[i];
    }
    return 0;
}
#endif

uint8_t matrix_scan(void)
{
    int ret = _matrix_scan();



#ifdef USE_I2C
    if( i2c_transaction() ) {
#else
    if( serial_transaction() ) {
#endif
        // turn on the indicator led when halves are disconnected
        TXLED1;

        error_count++;

        if (error_count > ERROR_DISCONNECT_COUNT) {
            // reset other half if disconnected
            int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
            for (int i = 0; i < ROWS_PER_HAND; ++i) {
                matrix[slaveOffset+i] = 0;
            }
        }
    } else {
        // turn off the indicator led on no error
        TXLED0;
        error_count = 0;
    }

    matrix_scan_quantum();

    return ret;
}

void matrix_slave_scan(void) {
    _matrix_scan();

    int offset = (isLeftHand) ? 0 : (MATRIX_ROWS / 2);

#ifdef USE_I2C
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        /* i2c_slave_buffer[i] = matrix[offset+i]; */
        i2c_slave_buffer[i] = matrix[offset+i];
    }
#else
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        serial_slave_buffer[i] = matrix[offset+i];
    }
#endif
}

bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print("\nr/c 0123456789ABCDEF\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        phex(row); print(": ");
        pbin_reverse16(matrix_get_row(row));
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += bitpop16(matrix[i]);
    }
    return count;
}

static void  init_cols(void)
{
    for(int x = 0; x < MATRIX_COLS; x++) {
        _SFR_IO8((col_pins[x] >> 4) + 1) &=  ~_BV(col_pins[x] & 0xF);
        _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
    }
}

static matrix_row_t read_cols(void)
{
    matrix_row_t result = 0;
    for(int x = 0; x < MATRIX_COLS; x++) {     
        result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
    }
    return result;
}

static void unselect_rows(void)
{
    for(int x = 0; x < ROWS_PER_HAND; x++) { 
        _SFR_IO8((row_pins[x] >> 4) + 1) &=  ~_BV(row_pins[x] & 0xF);
        _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
    }
}

static void select_row(uint8_t row)
{
    _SFR_IO8((row_pins[row] >> 4) + 1) |=  _BV(row_pins[row] & 0xF);
    _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

A keyboards/lets_split/pro_micro.h => keyboards/lets_split/pro_micro.h +362 -0
@@ 0,0 1,362 @@
/*
  pins_arduino.h - Pin definition functions for Arduino
  Part of Arduino - http://www.arduino.cc/

  Copyright (c) 2007 David A. Mellis

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General
  Public License along with this library; if not, write to the
  Free Software Foundation, Inc., 59 Temple Place, Suite 330,
  Boston, MA  02111-1307  USA

  $Id: wiring.h 249 2007-02-03 16:52:51Z mellis $
*/

#ifndef Pins_Arduino_h
#define Pins_Arduino_h

#include <avr/pgmspace.h>

// Workaround for wrong definitions in "iom32u4.h".
// This should be fixed in the AVR toolchain.
#undef UHCON
#undef UHINT
#undef UHIEN
#undef UHADDR
#undef UHFNUM
#undef UHFNUML
#undef UHFNUMH
#undef UHFLEN
#undef UPINRQX
#undef UPINTX
#undef UPNUM
#undef UPRST
#undef UPCONX
#undef UPCFG0X
#undef UPCFG1X
#undef UPSTAX
#undef UPCFG2X
#undef UPIENX
#undef UPDATX
#undef TCCR2A
#undef WGM20
#undef WGM21
#undef COM2B0
#undef COM2B1
#undef COM2A0
#undef COM2A1
#undef TCCR2B
#undef CS20
#undef CS21
#undef CS22
#undef WGM22
#undef FOC2B
#undef FOC2A
#undef TCNT2
#undef TCNT2_0
#undef TCNT2_1
#undef TCNT2_2
#undef TCNT2_3
#undef TCNT2_4
#undef TCNT2_5
#undef TCNT2_6
#undef TCNT2_7
#undef OCR2A
#undef OCR2_0
#undef OCR2_1
#undef OCR2_2
#undef OCR2_3
#undef OCR2_4
#undef OCR2_5
#undef OCR2_6
#undef OCR2_7
#undef OCR2B
#undef OCR2_0
#undef OCR2_1
#undef OCR2_2
#undef OCR2_3
#undef OCR2_4
#undef OCR2_5
#undef OCR2_6
#undef OCR2_7

#define NUM_DIGITAL_PINS  30
#define NUM_ANALOG_INPUTS 12

#define TX_RX_LED_INIT  DDRD |= (1<<5), DDRB |= (1<<0)
#define TXLED0          PORTD |= (1<<5)
#define TXLED1          PORTD &= ~(1<<5)
#define RXLED0          PORTB |= (1<<0)
#define RXLED1          PORTB &= ~(1<<0)

static const uint8_t SDA = 2;
static const uint8_t SCL = 3;
#define LED_BUILTIN 13

// Map SPI port to 'new' pins D14..D17
static const uint8_t SS   = 17;
static const uint8_t MOSI = 16;
static const uint8_t MISO = 14;
static const uint8_t SCK  = 15;

// Mapping of analog pins as digital I/O
// A6-A11 share with digital pins
static const uint8_t A0 = 18;
static const uint8_t A1 = 19;
static const uint8_t A2 = 20;
static const uint8_t A3 = 21;
static const uint8_t A4 = 22;
static const uint8_t A5 = 23;
static const uint8_t A6 = 24;   // D4
static const uint8_t A7 = 25;   // D6
static const uint8_t A8 = 26;   // D8
static const uint8_t A9 = 27;   // D9
static const uint8_t A10 = 28;  // D10
static const uint8_t A11 = 29;  // D12

#define digitalPinToPCICR(p)    ((((p) >= 8 && (p) <= 11) || ((p) >= 14 && (p) <= 17) || ((p) >= A8 && (p) <= A10)) ? (&PCICR) : ((uint8_t *)0))
#define digitalPinToPCICRbit(p) 0
#define digitalPinToPCMSK(p)    ((((p) >= 8 && (p) <= 11) || ((p) >= 14 && (p) <= 17) || ((p) >= A8 && (p) <= A10)) ? (&PCMSK0) : ((uint8_t *)0))
#define digitalPinToPCMSKbit(p) ( ((p) >= 8 && (p) <= 11) ? (p) - 4 : ((p) == 14 ? 3 : ((p) == 15 ? 1 : ((p) == 16 ? 2 : ((p) == 17 ? 0 : (p - A8 + 4))))))

//  __AVR_ATmega32U4__ has an unusual mapping of pins to channels
extern const uint8_t PROGMEM analog_pin_to_channel_PGM[];
#define analogPinToChannel(P)  ( pgm_read_byte( analog_pin_to_channel_PGM + (P) ) )

#define digitalPinToInterrupt(p) ((p) == 0 ? 2 : ((p) == 1 ? 3 : ((p) == 2 ? 1 : ((p) == 3 ? 0 : ((p) == 7 ? 4 : NOT_AN_INTERRUPT)))))

#ifdef ARDUINO_MAIN

// On the Arduino board, digital pins are also used
// for the analog output (software PWM).  Analog input
// pins are a separate set.

// ATMEL ATMEGA32U4 / ARDUINO LEONARDO
//
// D0               PD2                 RXD1/INT2
// D1               PD3                 TXD1/INT3
// D2               PD1     SDA         SDA/INT1
// D3#              PD0     PWM8/SCL    OC0B/SCL/INT0
// D4       A6      PD4                 ADC8
// D5#              PC6     ???         OC3A/#OC4A
// D6#      A7      PD7     FastPWM     #OC4D/ADC10
// D7               PE6                 INT6/AIN0
//
// D8       A8      PB4                 ADC11/PCINT4
// D9#      A9      PB5     PWM16       OC1A/#OC4B/ADC12/PCINT5
// D10#     A10     PB6     PWM16       OC1B/0c4B/ADC13/PCINT6
// D11#             PB7     PWM8/16     0C0A/OC1C/#RTS/PCINT7
// D12      A11     PD6                 T1/#OC4D/ADC9
// D13#             PC7     PWM10       CLK0/OC4A
//
// A0       D18     PF7                 ADC7
// A1       D19     PF6                 ADC6
// A2       D20     PF5                 ADC5
// A3       D21     PF4                 ADC4
// A4       D22     PF1                 ADC1
// A5       D23     PF0                 ADC0
//
// New pins D14..D17 to map SPI port to digital pins
//
// MISO     D14     PB3                 MISO,PCINT3
// SCK      D15     PB1                 SCK,PCINT1
// MOSI     D16     PB2                 MOSI,PCINT2
// SS       D17     PB0                 RXLED,SS/PCINT0
//
// Connected LEDs on board for TX and RX
// TXLED    D24     PD5                 XCK1
// RXLED    D17     PB0
// HWB              PE2                 HWB

// these arrays map port names (e.g. port B) to the
// appropriate addresses for various functions (e.g. reading
// and writing)
const uint16_t PROGMEM port_to_mode_PGM[] = {
    NOT_A_PORT,
    NOT_A_PORT,
    (uint16_t) &DDRB,
    (uint16_t) &DDRC,
    (uint16_t) &DDRD,
    (uint16_t) &DDRE,
    (uint16_t) &DDRF,
};

const uint16_t PROGMEM port_to_output_PGM[] = {
    NOT_A_PORT,
    NOT_A_PORT,
    (uint16_t) &PORTB,
    (uint16_t) &PORTC,
    (uint16_t) &PORTD,
    (uint16_t) &PORTE,
    (uint16_t) &PORTF,
};

const uint16_t PROGMEM port_to_input_PGM[] = {
    NOT_A_PORT,
    NOT_A_PORT,
    (uint16_t) &PINB,
    (uint16_t) &PINC,
    (uint16_t) &PIND,
    (uint16_t) &PINE,
    (uint16_t) &PINF,
};

const uint8_t PROGMEM digital_pin_to_port_PGM[] = {
    PD, // D0 - PD2
    PD, // D1 - PD3
    PD, // D2 - PD1
    PD, // D3 - PD0
    PD, // D4 - PD4
    PC, // D5 - PC6
    PD, // D6 - PD7
    PE, // D7 - PE6
    
    PB, // D8 - PB4
    PB, // D9 - PB5
    PB, // D10 - PB6
    PB, // D11 - PB7
    PD, // D12 - PD6
    PC, // D13 - PC7
    
    PB, // D14 - MISO - PB3
    PB, // D15 - SCK - PB1
    PB, // D16 - MOSI - PB2
    PB, // D17 - SS - PB0
    
    PF, // D18 - A0 - PF7
    PF, // D19 - A1 - PF6
    PF, // D20 - A2 - PF5
    PF, // D21 - A3 - PF4
    PF, // D22 - A4 - PF1
    PF, // D23 - A5 - PF0
    
    PD, // D24 - PD5
    PD, // D25 / D6 - A7 - PD7
    PB, // D26 / D8 - A8 - PB4
    PB, // D27 / D9 - A9 - PB5
    PB, // D28 / D10 - A10 - PB6
    PD, // D29 / D12 - A11 - PD6
};

const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = {
    _BV(2), // D0 - PD2
    _BV(3), // D1 - PD3
    _BV(1), // D2 - PD1
    _BV(0), // D3 - PD0
    _BV(4), // D4 - PD4
    _BV(6), // D5 - PC6
    _BV(7), // D6 - PD7
    _BV(6), // D7 - PE6
    
    _BV(4), // D8 - PB4
    _BV(5), // D9 - PB5
    _BV(6), // D10 - PB6
    _BV(7), // D11 - PB7
    _BV(6), // D12 - PD6
    _BV(7), // D13 - PC7
    
    _BV(3), // D14 - MISO - PB3
    _BV(1), // D15 - SCK - PB1
    _BV(2), // D16 - MOSI - PB2
    _BV(0), // D17 - SS - PB0
    
    _BV(7), // D18 - A0 - PF7
    _BV(6), // D19 - A1 - PF6
    _BV(5), // D20 - A2 - PF5
    _BV(4), // D21 - A3 - PF4
    _BV(1), // D22 - A4 - PF1
    _BV(0), // D23 - A5 - PF0
    
    _BV(5), // D24 - PD5
    _BV(7), // D25 / D6 - A7 - PD7
    _BV(4), // D26 / D8 - A8 - PB4
    _BV(5), // D27 / D9 - A9 - PB5
    _BV(6), // D28 / D10 - A10 - PB6
    _BV(6), // D29 / D12 - A11 - PD6
};

const uint8_t PROGMEM digital_pin_to_timer_PGM[] = {
    NOT_ON_TIMER,   
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    TIMER0B,        /* 3 */
    NOT_ON_TIMER,
    TIMER3A,        /* 5 */
    TIMER4D,        /* 6 */
    NOT_ON_TIMER,   
    
    NOT_ON_TIMER,   
    TIMER1A,        /* 9 */
    TIMER1B,        /* 10 */
    TIMER0A,        /* 11 */
    
    NOT_ON_TIMER,   
    TIMER4A,        /* 13 */
    
    NOT_ON_TIMER,   
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,

    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
    NOT_ON_TIMER,
};

const uint8_t PROGMEM analog_pin_to_channel_PGM[] = {
    7,  // A0               PF7                 ADC7
    6,  // A1               PF6                 ADC6    
    5,  // A2               PF5                 ADC5    
    4,  // A3               PF4                 ADC4
    1,  // A4               PF1                 ADC1    
    0,  // A5               PF0                 ADC0    
    8,  // A6       D4      PD4                 ADC8
    10, // A7       D6      PD7                 ADC10
    11, // A8       D8      PB4                 ADC11
    12, // A9       D9      PB5                 ADC12
    13, // A10      D10     PB6                 ADC13
    9   // A11      D12     PD6                 ADC9
};

#endif /* ARDUINO_MAIN */

// These serial port names are intended to allow libraries and architecture-neutral
// sketches to automatically default to the correct port name for a particular type
// of use.  For example, a GPS module would normally connect to SERIAL_PORT_HARDWARE_OPEN,
// the first hardware serial port whose RX/TX pins are not dedicated to another use.
//
// SERIAL_PORT_MONITOR        Port which normally prints to the Arduino Serial Monitor
//
// SERIAL_PORT_USBVIRTUAL     Port which is USB virtual serial
//
// SERIAL_PORT_LINUXBRIDGE    Port which connects to a Linux system via Bridge library
//
// SERIAL_PORT_HARDWARE       Hardware serial port, physical RX & TX pins.
//
// SERIAL_PORT_HARDWARE_OPEN  Hardware serial ports which are open for use.  Their RX & TX
//                            pins are NOT connected to anything by default.
#define SERIAL_PORT_MONITOR        Serial
#define SERIAL_PORT_USBVIRTUAL     Serial
#define SERIAL_PORT_HARDWARE       Serial1
#define SERIAL_PORT_HARDWARE_OPEN  Serial1

#endif /* Pins_Arduino_h */

R keyboards/lets-split/readme.md => keyboards/lets_split/readme.md +0 -0
A keyboards/lets_split/split_util.c => keyboards/lets_split/split_util.c +67 -0
@@ 0,0 1,67 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "i2c.h"
#include "keyboard.h"
#include "config.h"

volatile bool isLeftHand = true;

static void setup_handedness(void) {
    isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
}

static void keyboard_master_setup(void) {
#ifdef USE_I2C
    i2c_master_init();
#else
    serial_master_init();
#endif
}

static void keyboard_slave_setup(void) {
#ifdef USE_I2C
    i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
    serial_slave_init();
#endif
}

bool has_usb(void) {
   USBCON |= (1 << OTGPADE); //enables VBUS pad
   _delay_us(5);
   return (USBSTA & (1<<VBUS));  //checks state of VBUS
}

void split_keyboard_setup(void) {
   setup_handedness();

   if (has_usb()) {
      keyboard_master_setup();
   } else {
      keyboard_slave_setup();
   }
   sei();
}

void keyboard_slave_loop(void) {
   matrix_init();

   while (1) {
      matrix_slave_scan();
   }
}

// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
    split_keyboard_setup();

    if (!has_usb()) {
        keyboard_slave_loop();
    }
}

A keyboards/lets_split/split_util.h => keyboards/lets_split/split_util.h +20 -0
@@ 0,0 1,20 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H

#include <stdbool.h>

#define EECONFIG_BOOTMAGIC_END      (uint8_t *)10
#define EECONFIG_HANDEDNESS         EECONFIG_BOOTMAGIC_END

#define SLAVE_I2C_ADDRESS           0x32

extern volatile bool isLeftHand;

// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);

void split_keyboard_setup(void);
bool has_usb(void);
void keyboard_slave_loop(void);

#endif

A keyboards/lets_split/uno-slave/Makefile => keyboards/lets_split/uno-slave/Makefile +226 -0
@@ 0,0 1,226 @@
# Hey Emacs, this is a -*- makefile -*-

# AVR-GCC Makefile template, derived from the WinAVR template (which
# is public domain), believed to be neutral to any flavor of "make"
# (GNU make, BSD make, SysV make)


MCU = atmega328p
FORMAT = ihex
TARGET = keyboard-i2c-slave
SRC = \
	$(TARGET).c \
	uno-matrix.c \
	../serial.c \
	../i2c-slave.c

ASRC =
OPT = s

# Programming support using avrdude. Settings and variables.

AVRDUDE_PROGRAMMER = arduino
AVRDUDE_PORT = /dev/ttyACM0

# Name of this Makefile (used for "make depend").
MAKEFILE = Makefile

# Debugging format.
# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
DEBUG = stabs

# Compiler flag to set the C Standard level.
# c89   - "ANSI" C
# gnu89 - c89 plus GCC extensions
# c99   - ISO C99 standard (not yet fully implemented)
# gnu99 - c99 plus GCC extensions
CSTANDARD = -std=gnu99

# Place -D or -U options here
CDEFS =

# Place -I options here
CINCS =


CDEBUG = -g$(DEBUG)
CWARN = -Wall -Wstrict-prototypes
CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) \
	-fno-aggressive-loop-optimizations

#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs


#Additional libraries.

# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min

# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt

PRINTF_LIB =

# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min

# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt

SCANF_LIB =

MATH_LIB = -lm

# External memory options

# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff

# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff

EXTMEMOPTS =

#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref
LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)


AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep


# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y

# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V

# Increase verbosity level.  Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v

AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)


CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
NM = avr-nm
AVRDUDE = avrdude
REMOVE = rm -f
MV = mv -f

# Define all object files.
OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)

# Define all listing files.
LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)

# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)


# Default target.
all: build

build: elf hex eep

elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym


# Program the device.
program: $(TARGET).hex $(TARGET).eep
	$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)


# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT=$(OBJCOPY) --debugging \
--change-section-address .data-0x800000 \
--change-section-address .bss-0x800000 \
--change-section-address .noinit-0x800000 \
--change-section-address .eeprom-0x810000


coff: $(TARGET).elf
	$(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof


extcoff: $(TARGET).elf
	$(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof


.SUFFIXES: .elf .hex .eep .lss .sym

.elf.hex:
	$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@

.elf.eep:
	-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
	--change-section-lma .eeprom=0 -O $(FORMAT) $< $@

# Create extended listing file from ELF output file.
.elf.lss:
	$(OBJDUMP) -h -S $< > $@

# Create a symbol table from ELF output file.
.elf.sym:
	$(NM) -n $< > $@



# Link: create ELF output file from object files.
$(TARGET).elf: $(OBJ)
	$(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)


# Compile: create object files from C source files.
.c.o:
	$(CC) -c $(ALL_CFLAGS) $< -o $@


# Compile: create assembler files from C source files.
.c.s:
	$(CC) -S $(ALL_CFLAGS) $< -o $@


# Assemble: create object files from assembler source files.
.S.o:
	$(CC) -c $(ALL_ASFLAGS) $< -o $@



# Target: clean project.
clean:
	$(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \
	$(TARGET).map $(TARGET).sym $(TARGET).lss \
	$(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)

depend:
	if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
	then \
		sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
			$(MAKEFILE).$$$$ && \
		$(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
	fi
	echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
		>> $(MAKEFILE); \
	$(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)

.PHONY:	all build elf hex eep lss sym program coff extcoff clean depend

A keyboards/lets_split/uno-slave/keyboard-i2c-slave.c => keyboards/lets_split/uno-slave/keyboard-i2c-slave.c +42 -0
@@ 0,0 1,42 @@
#include "../i2c-slave.h"
#include "../serial.h"
#include "uno-matrix.h"

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>

void setup(void) {
  // give some time for noise to clear
  _delay_us(1000);

  // turn off arduino uno's led on pin 13
  DDRB |= (1 << 5);
  PORTB &= ~(1 << 5);

  matrix_init();
  /* i2c_slave_init(0x32); */
  serial_slave_init();

  /* serial_slave_buffer[0] = 0xa1; */
  /* serial_slave_buffer[1] = 0x52; */
  /* serial_slave_buffer[2] = 0xa2; */
  /* serial_slave_buffer[3] = 0x67; */

  // need interrupts for i2c slave code to work
  sei();
}

void loop(void) {
  matrix_scan();
  for(int i=0; i<MATRIX_ROWS; ++i) {
    slaveBuffer[i] = matrix_get_row(i);
    serial_slave_buffer[i] = slaveBuffer[i];
  }
}

int main(int argc, char *argv[]) {
  setup();
  while (1)
    loop();
}

A keyboards/lets_split/uno-slave/readme.md => keyboards/lets_split/uno-slave/readme.md +1 -0
@@ 0,0 1,1 @@
Code for Arduino uno (atmega328p) slave used for testing.

A keyboards/lets_split/uno-slave/uno-matrix.c => keyboards/lets_split/uno-slave/uno-matrix.c +160 -0
@@ 0,0 1,160 @@
#define F_CPU 16000000UL

#include <util/delay.h>
#include <avr/io.h>
#include <stdlib.h>

#include "uno-matrix.h"

#define debug(X) NULL
#define debug_hex(X) NULL

#ifndef DEBOUNCE
#   define DEBOUNCE  5
#endif

static uint8_t debouncing = DEBOUNCE;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

void matrix_init(void)
{
    //debug_enable = true;
    //debug_matrix = true;
    //debug_mouse = true;
    // initialize row and col
    unselect_rows();
    init_cols();

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }
}

uint8_t matrix_scan(void)
{
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        select_row(i);
        _delay_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        //Serial.println(cols, BIN);
        if (matrix_debouncing[i] != cols) {
            matrix_debouncing[i] = cols;
            if (debouncing) {
                debug("bounce!: "); debug_hex(debouncing); debug("\n");
            }
            debouncing = DEBOUNCE;
        }
        unselect_rows();
    }

    if (debouncing) {
        if (--debouncing) {
            _delay_ms(1);
        } else {
            for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
                matrix[i] = matrix_debouncing[i];
            }
        }
    }

    return 1;
}

bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

// TODO update this comment
/* Column pin configuration
 * col: 0   1   2   3   4   5
 * pin: D3  D4  D5  D6  D7  B0
 */
static void  init_cols(void)
{
    // Input with pull-up(DDR:0, PORT:1)
  DDRD  &= ~(1<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7);
  PORTD |=  (1<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7);

  DDRB  &= ~(1<<0);
  PORTB |=  (1<<0);
}

static matrix_row_t read_cols(void)
{
    return (PIND&(1<<3) ? 0 : (1<<0)) |
           (PIND&(1<<4) ? 0 : (1<<1)) |
           (PIND&(1<<5) ? 0 : (1<<2)) |
           (PIND&(1<<6) ? 0 : (1<<3)) |
           (PIND&(1<<7) ? 0 : (1<<4)) |
           (PINB&(1<<0) ? 0 : (1<<5));
}

/* Row pin configuration
 * row: 0  1  2  3
 * pin: C0 C1 C2 C3
 */
static void unselect_rows(void)
{
    // Hi-Z(DDR:0, PORT:0) to unselect
    DDRC  &= ~0xF;
    PORTC &= ~0xF;
}

static void select_row(uint8_t row)
{
    // Output low(DDR:1, PORT:0) to select
    switch (row) {
        case 0:
            DDRC  |= (1<<0);
            PORTC &= ~(1<<0);
            break;
        case 1:
            DDRC  |= (1<<1);
            PORTC &= ~(1<<1);
            break;
        case 2:
            DDRC  |= (1<<2);
            PORTC &= ~(1<<2);
            break;
        case 3:
            DDRC  |= (1<<3);
            PORTC &= ~(1<<3);
            break;
    }
}

A keyboards/lets_split/uno-slave/uno-matrix.h => keyboards/lets_split/uno-slave/uno-matrix.h +19 -0
@@ 0,0 1,19 @@
#ifndef UNO_MATRIX
#define UNO_MATRIX

#define MATRIX_ROWS 4
#define MATRIX_COLS 6

#include <stdbool.h>

typedef uint8_t matrix_row_t;

uint8_t matrix_rows(void);
uint8_t matrix_cols(void);
void matrix_init(void);
uint8_t matrix_scan(void);
bool matrix_is_modified(void);
bool matrix_is_on(uint8_t row, uint8_t col);
matrix_row_t matrix_get_row(uint8_t row);

#endif

A keyboards/lets_split/usbconfig.h => keyboards/lets_split/usbconfig.h +377 -0
@@ 0,0 1,377 @@
/* Name: usbconfig.h
 * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
 * Author: Christian Starkjohann
 * Creation Date: 2005-04-01
 * Tabsize: 4
 * Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
 * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
 * This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
 */

#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__


/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
*/

/* ---------------------------- Hardware Config ---------------------------- */

#define USB_CFG_IOPORTNAME      D
/* This is the port where the USB bus is connected. When you configure it to
 * "B", the registers PORTB, PINB and DDRB will be used.
 */
#define USB_CFG_DMINUS_BIT      3
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
 * This may be any bit in the port.
 */
#define USB_CFG_DPLUS_BIT       2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
 * This may be any bit in the port. Please note that D+ must also be connected
 * to interrupt pin INT0! [You can also use other interrupts, see section
 * "Optional MCU Description" below, or you can connect D- to the interrupt, as
 * it is required if you use the USB_COUNT_SOF feature. If you use D- for the
 * interrupt, the USB interrupt will also be triggered at Start-Of-Frame
 * markers every millisecond.]
 */
#define USB_CFG_CLOCK_KHZ       (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
 * 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
 * require no crystal, they tolerate +/- 1% deviation from the nominal
 * frequency. All other rates require a precision of 2000 ppm and thus a
 * crystal!
 * Since F_CPU should be defined to your actual clock rate anyway, you should
 * not need to modify this setting.
 */
#define USB_CFG_CHECK_CRC       0
/* Define this to 1 if you want that the driver checks integrity of incoming
 * data packets (CRC checks). CRC checks cost quite a bit of code size and are
 * currently only available for 18 MHz crystal clock. You must choose
 * USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
 */

/* ----------------------- Optional Hardware Config ------------------------ */

/* #define USB_CFG_PULLUP_IOPORTNAME   D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
 * V+, you can connect and disconnect the device from firmware by calling
 * the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
 * This constant defines the port on which the pullup resistor is connected.
 */
/* #define USB_CFG_PULLUP_BIT          4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
 * above) where the 1.5k pullup resistor is connected. See description
 * above for details.
 */

/* --------------------------- Functional Range ---------------------------- */

#define USB_CFG_HAVE_INTRIN_ENDPOINT    1
/* Define this to 1 if you want to compile a version with two endpoints: The
 * default control endpoint 0 and an interrupt-in endpoint (any other endpoint
 * number).
 */
#define USB_CFG_HAVE_INTRIN_ENDPOINT3   1
/* Define this to 1 if you want to compile a version with three endpoints: The
 * default control endpoint 0, an interrupt-in endpoint 3 (or the number
 * configured below) and a catch-all default interrupt-in endpoint as above.
 * You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
 */
#define USB_CFG_EP3_NUMBER              3
/* If the so-called endpoint 3 is used, it can now be configured to any other
 * endpoint number (except 0) with this macro. Default if undefined is 3.
 */
/* #define USB_INITIAL_DATATOKEN           USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
 * interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
 * Since the token is toggled BEFORE sending any data, the first packet is
 * sent with the oposite value of this configuration!
 */
#define USB_CFG_IMPLEMENT_HALT          0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
 * for endpoint 1 (interrupt endpoint). Although you may not need this feature,
 * it is required by the standard. We have made it a config option because it
 * bloats the code considerably.
 */
#define USB_CFG_SUPPRESS_INTR_CODE      0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
 * want to send any data over them. If this macro is defined to 1, functions
 * usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
 * you need the interrupt-in endpoints in order to comply to an interface
 * (e.g. HID), but never want to send any data. This option saves a couple
 * of bytes in flash memory and the transmit buffers in RAM.
 */
#define USB_CFG_INTR_POLL_INTERVAL      10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
 * interval. The value is in milliseconds and must not be less than 10 ms for
 * low speed devices.
 */
#define USB_CFG_IS_SELF_POWERED         0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
 * device is powered from the USB bus.
 */
#define USB_CFG_MAX_BUS_POWER           100
/* Set this variable to the maximum USB bus power consumption of your device.
 * The value is in milliamperes. [It will be divided by two since USB
 * communicates power requirements in units of 2 mA.]
 */
#define USB_CFG_IMPLEMENT_FN_WRITE      1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
 * transfers. Set it to 0 if you don't need it and want to save a couple of
 * bytes.
 */
#define USB_CFG_IMPLEMENT_FN_READ       0
/* Set this to 1 if you need to send control replies which are generated
 * "on the fly" when usbFunctionRead() is called. If you only want to send
 * data from a static buffer, set it to 0 and return the data from
 * usbFunctionSetup(). This saves a couple of bytes.
 */
#define USB_CFG_IMPLEMENT_FN_WRITEOUT   0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
 * You must implement the function usbFunctionWriteOut() which receives all
 * interrupt/bulk data sent to any endpoint other than 0. The endpoint number
 * can be found in 'usbRxToken'.
 */
#define USB_CFG_HAVE_FLOWCONTROL        0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
 * of the macros usbDisableAllRequests() and usbEnableAllRequests() in
 * usbdrv.h.
 */
#define USB_CFG_DRIVER_FLASH_PAGE       0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
 * where the driver's constants (descriptors) are located. Or in other words:
 * Define this to 1 for boot loaders on the ATMega128.
 */
#define USB_CFG_LONG_TRANSFERS          0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
 * in a single control-in or control-out transfer. Note that the capability
 * for long transfers increases the driver size.
 */
/* #define USB_RX_USER_HOOK(data, len)     if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
 * defined, it's inserted at the beginning of received message processing.
 * If you eat the received message and don't want default processing to
 * proceed, do a return after doing your things. One possible application
 * (besides debugging) is to flash a status LED on each packet.
 */
/* #define USB_RESET_HOOK(resetStarts)     if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
 * one parameter which distinguishes between the start of RESET state and its
 * end.
 */
/* #define USB_SET_ADDRESS_HOOK()              hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
 * received.
 */
#define USB_COUNT_SOF                   0
/* define this macro to 1 if you need the global variable "usbSofCount" which
 * counts SOF packets. This feature requires that the hardware interrupt is
 * connected to D- instead of D+.
 */
/* #ifdef __ASSEMBLER__
 * macro myAssemblerMacro
 *     in      YL, TCNT0
 *     sts     timer0Snapshot, YL
 *     endm
 * #endif
 * #define USB_SOF_HOOK                    myAssemblerMacro
 * This macro (if defined) is executed in the assembler module when a
 * Start Of Frame condition is detected. It is recommended to define it to
 * the name of an assembler macro which is defined here as well so that more
 * than one assembler instruction can be used. The macro may use the register
 * YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
 * immediately after an SOF pulse may be lost and must be retried by the host.
 * What can you do with this hook? Since the SOF signal occurs exactly every
 * 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
 * designs running on the internal RC oscillator.
 * Please note that Start Of Frame detection works only if D- is wired to the
 * interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
 */
#define USB_CFG_CHECK_DATA_TOGGLING     0
/* define this macro to 1 if you want to filter out duplicate data packets
 * sent by the host. Duplicates occur only as a consequence of communication
 * errors, when the host does not receive an ACK. Please note that you need to
 * implement the filtering yourself in usbFunctionWriteOut() and
 * usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
 * for each control- and out-endpoint to check for duplicate packets.
 */
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH   0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
 * compiled in. This function can be used to calibrate the AVR's RC oscillator.
 */
#define USB_USE_FAST_CRC                0
/* The assembler module has two implementations for the CRC algorithm. One is
 * faster, the other is smaller. This CRC routine is only used for transmitted
 * messages where timing is not critical. The faster routine needs 31 cycles
 * per byte while the smaller one needs 61 to 69 cycles. The faster routine
 * may be worth the 32 bytes bigger code size if you transmit lots of data and
 * run the AVR close to its limit.
 */

/* -------------------------- Device Description --------------------------- */

#define USB_CFG_VENDOR_ID       (VENDOR_ID & 0xFF), ((VENDOR_ID >> 8) & 0xFF)
/* USB vendor ID for the device, low byte first. If you have registered your
 * own Vendor ID, define it here. Otherwise you may use one of obdev's free
 * shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
 * *** IMPORTANT NOTE ***
 * This template uses obdev's shared VID/PID pair for Vendor Class devices
 * with libusb: 0x16c0/0x5dc.  Use this VID/PID pair ONLY if you understand
 * the implications!
 */
#define USB_CFG_DEVICE_ID       (PRODUCT_ID & 0xFF), ((PRODUCT_ID >> 8) & 0xFF)
/* This is the ID of the product, low byte first. It is interpreted in the
 * scope of the vendor ID. If you have registered your own VID with usb.org
 * or if you have licensed a PID from somebody else, define it here. Otherwise
 * you may use one of obdev's free shared VID/PID pairs. See the file
 * USB-IDs-for-free.txt for details!
 * *** IMPORTANT NOTE ***
 * This template uses obdev's shared VID/PID pair for Vendor Class devices
 * with libusb: 0x16c0/0x5dc.  Use this VID/PID pair ONLY if you understand
 * the implications!
 */
#define USB_CFG_DEVICE_VERSION  0x00, 0x01
/* Version number of the device: Minor number first, then major number.
 */
#define USB_CFG_VENDOR_NAME     't', '.', 'm', '.', 'k', '.'
#define USB_CFG_VENDOR_NAME_LEN 6
/* These two values define the vendor name returned by the USB device. The name
 * must be given as a list of characters under single quotes. The characters
 * are interpreted as Unicode (UTF-16) entities.
 * If you don't want a vendor name string, undefine these macros.
 * ALWAYS define a vendor name containing your Internet domain name if you use
 * obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
 * details.
 */
#define USB_CFG_DEVICE_NAME     'P', 'S', '/', '2', ' ', 'k', 'e', 'y', 'b', 'o', 'a', 'r', 'd', ' ', 'c', 'o', 'n', 'v', 'e', 'r', 't', 'e', 'r'
#define USB_CFG_DEVICE_NAME_LEN 23
/* Same as above for the device name. If you don't want a device name, undefine
 * the macros. See the file USB-IDs-for-free.txt before you assign a name if
 * you use a shared VID/PID.
 */
/*#define USB_CFG_SERIAL_NUMBER   'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN   0 */
/* Same as above for the serial number. If you don't want a serial number,
 * undefine the macros.
 * It may be useful to provide the serial number through other means than at
 * compile time. See the section about descriptor properties below for how
 * to fine tune control over USB descriptors such as the string descriptor
 * for the serial number.
 */
#define USB_CFG_DEVICE_CLASS        0
#define USB_CFG_DEVICE_SUBCLASS     0
/* See USB specification if you want to conform to an existing device class.
 * Class 0xff is "vendor specific".
 */
#define USB_CFG_INTERFACE_CLASS     3   /* HID */
#define USB_CFG_INTERFACE_SUBCLASS  1   /* Boot */
#define USB_CFG_INTERFACE_PROTOCOL  1   /* Keyboard */
/* See USB specification if you want to conform to an existing device class or
 * protocol. The following classes must be set at interface level:
 * HID class is 3, no subclass and protocol required (but may be useful!)
 * CDC class is 2, use subclass 2 and protocol 1 for ACM
 */
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH    0
/* Define this to the length of the HID report descriptor, if you implement
 * an HID device. Otherwise don't define it or define it to 0.
 * If you use this define, you must add a PROGMEM character array named
 * "usbHidReportDescriptor" to your code which contains the report descriptor.
 * Don't forget to keep the array and this define in sync!
 */

/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
 * This technique saves a couple of bytes in flash memory.
 */

/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
 * provide our own. These can be provided as (1) fixed length static data in
 * flash memory, (2) fixed length static data in RAM or (3) dynamically at
 * runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
 * information about this function.
 * Descriptor handling is configured through the descriptor's properties. If
 * no properties are defined or if they are 0, the default descriptor is used.
 * Possible properties are:
 *   + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
 *     at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
 *     used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
 *     you want RAM pointers.
 *   + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
 *     in static memory is in RAM, not in flash memory.
 *   + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
 *     the driver must know the descriptor's length. The descriptor itself is
 *     found at the address of a well known identifier (see below).
 * List of static descriptor names (must be declared PROGMEM if in flash):
 *   char usbDescriptorDevice[];
 *   char usbDescriptorConfiguration[];
 *   char usbDescriptorHidReport[];
 *   char usbDescriptorString0[];
 *   int usbDescriptorStringVendor[];
 *   int usbDescriptorStringDevice[];
 *   int usbDescriptorStringSerialNumber[];
 * Other descriptors can't be provided statically, they must be provided
 * dynamically at runtime.
 *
 * Descriptor properties are or-ed or added together, e.g.:
 * #define USB_CFG_DESCR_PROPS_DEVICE   (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
 *
 * The following descriptors are defined:
 *   USB_CFG_DESCR_PROPS_DEVICE
 *   USB_CFG_DESCR_PROPS_CONFIGURATION
 *   USB_CFG_DESCR_PROPS_STRINGS
 *   USB_CFG_DESCR_PROPS_STRING_0
 *   USB_CFG_DESCR_PROPS_STRING_VENDOR
 *   USB_CFG_DESCR_PROPS_STRING_PRODUCT
 *   USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
 *   USB_CFG_DESCR_PROPS_HID
 *   USB_CFG_DESCR_PROPS_HID_REPORT
 *   USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
 *
 * Note about string descriptors: String descriptors are not just strings, they
 * are Unicode strings prefixed with a 2 byte header. Example:
 * int  serialNumberDescriptor[] = {
 *     USB_STRING_DESCRIPTOR_HEADER(6),
 *     'S', 'e', 'r', 'i', 'a', 'l'
 * };
 */

#define USB_CFG_DESCR_PROPS_DEVICE                  0
#define USB_CFG_DESCR_PROPS_CONFIGURATION           USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_CONFIGURATION           0
#define USB_CFG_DESCR_PROPS_STRINGS                 0
#define USB_CFG_DESCR_PROPS_STRING_0                0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR           0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT          0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER    0
//#define USB_CFG_DESCR_PROPS_HID                     USB_PROP_IS_DYNAMIC
#define USB_CFG_DESCR_PROPS_HID                     0
#define USB_CFG_DESCR_PROPS_HID_REPORT              USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID_REPORT              0
#define USB_CFG_DESCR_PROPS_UNKNOWN                 0

/* ----------------------- Optional MCU Description ------------------------ */

/* The following configurations have working defaults in usbdrv.h. You
 * usually don't need to set them explicitly. Only if you want to run
 * the driver on a device which is not yet supported or with a compiler
 * which is not fully supported (such as IAR C) or if you use a differnt
 * interrupt than INT0, you may have to define some of these.
 */
/* #define USB_INTR_CFG            MCUCR */
/* #define USB_INTR_CFG_SET        ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR        0 */
/* #define USB_INTR_ENABLE         GIMSK */
/* #define USB_INTR_ENABLE_BIT     INT0 */
/* #define USB_INTR_PENDING        GIFR */
/* #define USB_INTR_PENDING_BIT    INTF0 */
/* #define USB_INTR_VECTOR         INT0_vect */

#endif /* __usbconfig_h_included__ */

M tmk_core/common/matrix.h => tmk_core/common/matrix.h +5 -0
@@ 72,6 72,11 @@ void matrix_scan_kb(void);
void matrix_init_user(void);
void matrix_scan_user(void);

#ifdef I2C_SPLIT
	void slave_matrix_init(void);
	uint8_t slave_matrix_scan(void);
#endif

#ifdef __cplusplus
}
#endif