~ruther/qmk_firmware

c5ddada32ea45f50ddecdfc1e7d39f51465ef302 — Nick Brassel 4 years ago 8a950a7
Remove leftover old implementations of the lily58 split code. (#12442)

5 files changed, 2 insertions(+), 1050 deletions(-)

M keyboards/lily58/rev1/config.h
D keyboards/lily58/rev1/matrix.c
D keyboards/lily58/rev1/serial_config.h
D keyboards/lily58/rev1/split_util.c
D keyboards/lily58/serial.c
M keyboards/lily58/rev1/config.h => keyboards/lily58/rev1/config.h +2 -0
@@ 35,6 35,8 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#define MATRIX_ROW_PINS { C6, D7, E6, B4, B5 }
#define MATRIX_COL_PINS { F6, F7, B1, B3, B2, B6 }

#define SOFT_SERIAL_PIN D2
#define SERIAL_USE_MULTI_TRANSACTION

/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST

D keyboards/lily58/rev1/matrix.c => keyboards/lily58/rev1/matrix.c +0 -357
@@ 1,357 0,0 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "quantum.h"

#ifdef USE_MATRIX_I2C
#  include "i2c.h"
#else // USE_SERIAL
#  include "split_scomm.h"
#endif

#ifndef DEBOUNCE
#  define DEBOUNCE	5
#endif

#define ERROR_DISCONNECT_COUNT 5

static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;
uint8_t is_master = 0 ;

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static uint8_t matrix_master_scan(void);


__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

void matrix_init(void)
{
    split_keyboard_setup();

    // initialize row and col
    unselect_rows();
    init_cols();

    setPinOutput(B0);
    setPinOutput(D5);
    writePinHigh(B0);
    writePinHigh(D5);

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }

    is_master = has_usb();

    matrix_init_quantum();
}

uint8_t _matrix_scan(void)
{
    // Right hand is stored after the left in the matirx so, we need to offset it
    int offset = isLeftHand ? 0 : (ROWS_PER_HAND);

    for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
        select_row(i);
        _delay_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        if (matrix_debouncing[i+offset] != cols) {
            matrix_debouncing[i+offset] = cols;
            debouncing = DEBOUNCE;
        }
        unselect_rows();
    }

    if (debouncing) {
        if (--debouncing) {
            _delay_ms(1);
        } else {
            for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
                matrix[i+offset] = matrix_debouncing[i+offset];
            }
        }
    }

    return 1;
}

#ifdef USE_MATRIX_I2C

// Get rows from other half over i2c
int i2c_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) goto i2c_error;

    // start of matrix stored at 0x00
    err = i2c_master_write(0x00);
    if (err) goto i2c_error;

    // Start read
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
    if (err) goto i2c_error;

    if (!err) {
        int i;
        for (i = 0; i < ROWS_PER_HAND-1; ++i) {
            matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
        }
        matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
        i2c_master_stop();
    } else {
i2c_error: // the cable is disconnceted, or something else went wrong
        i2c_reset_state();
        return err;
    }

    return 0;
}

#else // USE_SERIAL

int serial_transaction(int master_changed) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
#ifdef SERIAL_USE_MULTI_TRANSACTION
    int ret=serial_update_buffers(master_changed);
#else
    int ret=serial_update_buffers();
#endif
    if (ret ) {
        if(ret==2) writePinLow(B0);
        return 1;
    }
    writePinHigh(B0);
    memcpy(&matrix[slaveOffset],
        (void *)serial_slave_buffer, SERIAL_SLAVE_BUFFER_LENGTH);
    return 0;
}
#endif

uint8_t matrix_scan(void)
{
    if (is_master) {
        matrix_master_scan();
    }else{
        matrix_slave_scan();
        int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
        memcpy(&matrix[offset],
               (void *)serial_master_buffer, SERIAL_MASTER_BUFFER_LENGTH);
        matrix_scan_quantum();
    }
    return 1;
}


uint8_t matrix_master_scan(void) {

    int ret = _matrix_scan();
    int mchanged = 1;

    int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;

#ifdef USE_MATRIX_I2C
//    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        /* i2c_slave_buffer[i] = matrix[offset+i]; */
//        i2c_slave_buffer[i] = matrix[offset+i];
//    }
#else // USE_SERIAL
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    mchanged = memcmp((void *)serial_master_buffer,
		      &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
  #endif
    memcpy((void *)serial_master_buffer,
	   &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
#endif

#ifdef USE_MATRIX_I2C
    if( i2c_transaction() ) {
#else // USE_SERIAL
    if( serial_transaction(mchanged) ) {
#endif
        // turn on the indicator led when halves are disconnected
        writePinLow(D5);

        error_count++;

        if (error_count > ERROR_DISCONNECT_COUNT) {
            // reset other half if disconnected
            int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
            for (int i = 0; i < ROWS_PER_HAND; ++i) {
                matrix[slaveOffset+i] = 0;
            }
        }
    } else {
        // turn off the indicator led on no error
        writePinHigh(D5);
        error_count = 0;
    }
    matrix_scan_quantum();
    return ret;
}

void matrix_slave_scan(void) {
    _matrix_scan();

    int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;

#ifdef USE_MATRIX_I2C
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        /* i2c_slave_buffer[i] = matrix[offset+i]; */
        i2c_slave_buffer[i] = matrix[offset+i];
    }
#else // USE_SERIAL
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    int change = 0;
  #endif
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
  #ifdef SERIAL_USE_MULTI_TRANSACTION
        if( serial_slave_buffer[i] != matrix[offset+i] )
	    change = 1;
  #endif
        serial_slave_buffer[i] = matrix[offset+i];
    }
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    slave_buffer_change_count += change;
  #endif
#endif
}

bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print("\nr/c 0123456789ABCDEF\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        print_hex8(row); print(": ");
        print_bin_reverse16(matrix_get_row(row));
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += bitpop16(matrix[i]);
    }
    return count;
}

static void  init_cols(void)
{
    for(int x = 0; x < MATRIX_COLS; x++) {
        _SFR_IO8((col_pins[x] >> 4) + 1) &=  ~_BV(col_pins[x] & 0xF);
        _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
    }
}

static matrix_row_t read_cols(void)
{
    matrix_row_t result = 0;
    for(int x = 0; x < MATRIX_COLS; x++) {
        result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
    }
    return result;
}

static void unselect_rows(void)
{
    for(int x = 0; x < ROWS_PER_HAND; x++) {
        _SFR_IO8((row_pins[x] >> 4) + 1) &=  ~_BV(row_pins[x] & 0xF);
        _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
    }
}

static void select_row(uint8_t row)
{
    _SFR_IO8((row_pins[row] >> 4) + 1) |=  _BV(row_pins[row] & 0xF);
    _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

D keyboards/lily58/rev1/serial_config.h => keyboards/lily58/rev1/serial_config.h +0 -4
@@ 1,4 0,0 @@
#ifndef SOFT_SERIAL_PIN
#define SOFT_SERIAL_PIN D2
#define SERIAL_USE_MULTI_TRANSACTION
#endif

D keyboards/lily58/rev1/split_util.c => keyboards/lily58/rev1/split_util.c +0 -100
@@ 1,100 0,0 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "wait.h"

#ifdef USE_MATRIX_I2C
#  include "i2c.h"
#else
#  include "split_scomm.h"
#endif

#ifndef SPLIT_USB_TIMEOUT
#    define SPLIT_USB_TIMEOUT 2500
#endif

volatile bool isLeftHand = true;

bool waitForUsb(void) {
    for (uint8_t i = 0; i < (SPLIT_USB_TIMEOUT / 100); i++) {
        // This will return true of a USB connection has been established
        if (UDADDR & _BV(ADDEN)) {
            return true;
        }
        wait_ms(100);
    }

    // Avoid NO_USB_STARTUP_CHECK - Disable USB as the previous checks seem to enable it somehow
    (USBCON &= ~(_BV(USBE) | _BV(OTGPADE)));

    return false;
}

__attribute__((weak)) bool is_keyboard_left(void) {
#if defined(SPLIT_HAND_PIN)
    // Test pin SPLIT_HAND_PIN for High/Low, if low it's right hand
    setPinInput(SPLIT_HAND_PIN);
    return readPin(SPLIT_HAND_PIN);
#elif defined(EE_HANDS)
    return eeconfig_read_handedness();
#elif defined(MASTER_RIGHT)
    return !has_usb();
#endif

    return has_usb();
}

__attribute__((weak)) bool has_usb(void) {
    static enum { UNKNOWN, MASTER, SLAVE } usbstate = UNKNOWN;

    // only check once, as this is called often
    if (usbstate == UNKNOWN) {
#if defined(SPLIT_USB_DETECT)
        usbstate = waitForUsb() ? MASTER : SLAVE;
#elif defined(__AVR__)
        USBCON |= (1 << OTGPADE);  // enables VBUS pad
        wait_us(5);

        usbstate = (USBSTA & (1 << VBUS)) ? MASTER : SLAVE;  // checks state of VBUS
#else
        usbstate = MASTER;
#endif
    }

    return (usbstate == MASTER);
}

static void keyboard_master_setup(void) {

#ifdef USE_MATRIX_I2C
    i2c_master_init();
#else
    serial_master_init();
#endif
}

static void keyboard_slave_setup(void) {

#ifdef USE_MATRIX_I2C
    i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
    serial_slave_init();
#endif
}

void split_keyboard_setup(void) {
   isLeftHand = is_keyboard_left();

   if (has_usb()) {
      keyboard_master_setup();
   } else {
      keyboard_slave_setup();
   }
   sei();
}

D keyboards/lily58/serial.c => keyboards/lily58/serial.c +0 -589
@@ 1,589 0,0 @@
/*
 * WARNING: be careful changing this code, it is very timing dependent
 *
 * 2018-10-28 checked
 *  avr-gcc 4.9.2
 *  avr-gcc 5.4.0
 *  avr-gcc 7.3.0
 */

#ifndef F_CPU
#define F_CPU 16000000
#endif

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"

#ifdef SOFT_SERIAL_PIN

#ifdef __AVR_ATmega32U4__
  // if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial.
  #ifdef USE_I2C
    #if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1
      #error Using ATmega32U4 I2C, so can not use PD0, PD1
    #endif
  #endif

  #if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3
    #define SERIAL_PIN_DDR   DDRD
    #define SERIAL_PIN_PORT  PORTD
    #define SERIAL_PIN_INPUT PIND
    #if SOFT_SERIAL_PIN == D0
      #define SERIAL_PIN_MASK _BV(PD0)
      #define EIMSK_BIT       _BV(INT0)
      #define EICRx_BIT       (~(_BV(ISC00) | _BV(ISC01)))
      #define SERIAL_PIN_INTERRUPT INT0_vect
    #elif  SOFT_SERIAL_PIN == D1
      #define SERIAL_PIN_MASK _BV(PD1)
      #define EIMSK_BIT       _BV(INT1)
      #define EICRx_BIT       (~(_BV(ISC10) | _BV(ISC11)))
      #define SERIAL_PIN_INTERRUPT INT1_vect
    #elif  SOFT_SERIAL_PIN == D2
      #define SERIAL_PIN_MASK _BV(PD2)
      #define EIMSK_BIT       _BV(INT2)
      #define EICRx_BIT       (~(_BV(ISC20) | _BV(ISC21)))
      #define SERIAL_PIN_INTERRUPT INT2_vect
    #elif  SOFT_SERIAL_PIN == D3
      #define SERIAL_PIN_MASK _BV(PD3)
      #define EIMSK_BIT       _BV(INT3)
      #define EICRx_BIT       (~(_BV(ISC30) | _BV(ISC31)))
      #define SERIAL_PIN_INTERRUPT INT3_vect
    #endif
  #elif  SOFT_SERIAL_PIN == E6
    #define SERIAL_PIN_DDR   DDRE
    #define SERIAL_PIN_PORT  PORTE
    #define SERIAL_PIN_INPUT PINE
    #define SERIAL_PIN_MASK  _BV(PE6)
    #define EIMSK_BIT        _BV(INT6)
    #define EICRx_BIT        (~(_BV(ISC60) | _BV(ISC61)))
    #define SERIAL_PIN_INTERRUPT INT6_vect
  #else
  #error invalid SOFT_SERIAL_PIN value
  #endif

#else
 #error serial.c now support ATmega32U4 only
#endif

//////////////// for backward compatibility ////////////////////////////////
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
  #if SERIAL_SLAVE_BUFFER_LENGTH > 0
  uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
  #endif
  #if SERIAL_MASTER_BUFFER_LENGTH > 0
  uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
  #endif
  uint8_t volatile status0 = 0;

SSTD_t transactions[] = {
    { (uint8_t *)&status0,
  #if SERIAL_MASTER_BUFFER_LENGTH > 0
      sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
  #else
      0, (uint8_t *)NULL,
  #endif
  #if SERIAL_SLAVE_BUFFER_LENGTH > 0
      sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
  #else
      0, (uint8_t *)NULL,
  #endif
  }
};

void serial_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }

void serial_slave_init(void)
{ soft_serial_target_init(transactions, TID_LIMIT(transactions)); }

// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers()
{
    int result;
    result = soft_serial_transaction();
    return result;
}

#endif // end of Simple API (OLD API, compatible with let's split serial.c)
////////////////////////////////////////////////////////////////////////////

#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x)    __builtin_avr_delay_cycles(x)

// parity check
#define ODD_PARITY 1
#define EVEN_PARITY 0
#define PARITY EVEN_PARITY

#ifdef SERIAL_DELAY
  // custom setup in config.h
  // #define TID_SEND_ADJUST 2
  // #define SERIAL_DELAY 6             // micro sec
  // #define READ_WRITE_START_ADJUST 30 // cycles
  // #define READ_WRITE_WIDTH_ADJUST 8 // cycles
#else
// ============ Standard setups ============

#ifndef SELECT_SOFT_SERIAL_SPEED
#define SELECT_SOFT_SERIAL_SPEED 1
//  0: about 189kbps
//  1: about 137kbps (default)
//  2: about 75kbps
//  3: about 39kbps
//  4: about 26kbps
//  5: about 20kbps
#endif

#if __GNUC__ < 6
  #define TID_SEND_ADJUST 14
#else
  #define TID_SEND_ADJUST 2
#endif

#if SELECT_SOFT_SERIAL_SPEED == 0
  // Very High speed
  #define SERIAL_DELAY 4             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 34 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 1
  // High speed
  #define SERIAL_DELAY 6             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 30 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 2
  // Middle speed
  #define SERIAL_DELAY 12            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 3
  // Low speed
  #define SERIAL_DELAY 24            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 4
  // Very Low speed
  #define SERIAL_DELAY 36            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 5
  // Ultra Low speed
  #define SERIAL_DELAY 48            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#else
#error invalid SELECT_SOFT_SERIAL_SPEED value
#endif /* SELECT_SOFT_SERIAL_SPEED */
#endif /* SERIAL_DELAY */

#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)

#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
  #define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
  #define SLAVE_INT_ACK_WIDTH_UNIT 2
  #define SLAVE_INT_ACK_WIDTH 4
#endif

static SSTD_t *Transaction_table = NULL;
static uint8_t Transaction_table_size = 0;

inline static void serial_delay(void) ALWAYS_INLINE;
inline static
void serial_delay(void) {
  _delay_us(SERIAL_DELAY);
}

inline static void serial_delay_half1(void) ALWAYS_INLINE;
inline static
void serial_delay_half1(void) {
  _delay_us(SERIAL_DELAY_HALF1);
}

inline static void serial_delay_half2(void) ALWAYS_INLINE;
inline static
void serial_delay_half2(void) {
  _delay_us(SERIAL_DELAY_HALF2);
}

inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
  SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}

// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
  SERIAL_PIN_DDR  &= ~SERIAL_PIN_MASK;
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

inline static uint8_t serial_read_pin(void) ALWAYS_INLINE;
inline static
uint8_t serial_read_pin(void) {
  return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}

inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
  SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}

inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_output();
    serial_high();
}

void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_input_with_pullup();

    // Enable INT0-INT3,INT6
    EIMSK |= EIMSK_BIT;
#if SERIAL_PIN_MASK == _BV(PE6)
    // Trigger on falling edge of INT6
    EICRB &= EICRx_BIT;
#else
    // Trigger on falling edge of INT0-INT3
    EICRA &= EICRx_BIT;
#endif
}

// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
  for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
  }
  // This shouldn't hang if the target disconnects because the
  // serial line will float to high if the target does disconnect.
  while (!serial_read_pin());
}

// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void) NO_INLINE;
static
void sync_send(void) {
  serial_low();
  serial_delay();
  serial_high();
}

// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
    uint8_t byte, i, p, pb;

  _delay_sub_us(READ_WRITE_START_ADJUST);
  for( i = 0, byte = 0, p = PARITY; i < bit; i++ ) {
      serial_delay_half1();   // read the middle of pulses
      if( serial_read_pin() ) {
          byte = (byte << 1) | 1; p ^= 1;
      } else {
          byte = (byte << 1) | 0; p ^= 0;
      }
      _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
      serial_delay_half2();
  }
  /* recive parity bit */
  serial_delay_half1();   // read the middle of pulses
  pb = serial_read_pin();
  _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
  serial_delay_half2();

  *pterrcount += (p != pb)? 1 : 0;

  return byte;
}

// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
    uint8_t b, p;
    for( p = PARITY, b = 1<<(bit-1); b ; b >>= 1) {
        if(data & b) {
            serial_high(); p ^= 1;
        } else {
            serial_low();  p ^= 0;
        }
        serial_delay();
    }
    /* send parity bit */
    if(p & 1) { serial_high(); }
    else      { serial_low(); }
    serial_delay();

    serial_low(); // sync_send() / senc_recv() need raise edge
}

static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    data = buffer[i];
    sync_send();
    serial_write_chunk(data,8);
  }
}

static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
  uint8_t pecount = 0;
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    sync_recv();
    data = serial_read_chunk(&pecount, 8);
    buffer[i] = data;
  }
  return pecount == 0;
}

inline static
void change_sender2reciver(void) {
    sync_send();          //0
    serial_delay_half1(); //1
    serial_low();         //2
    serial_input_with_pullup(); //2
    serial_delay_half1(); //3
}

inline static
void change_reciver2sender(void) {
    sync_recv();     //0
    serial_delay();  //1
    serial_low();    //3
    serial_output(); //3
    serial_delay_half1(); //4
}

static inline uint8_t nibble_bits_count(uint8_t bits)
{
    bits = (bits & 0x5) + (bits >> 1 & 0x5);
    bits = (bits & 0x3) + (bits >> 2 & 0x3);
    return bits;
}

// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {

#ifndef SERIAL_USE_MULTI_TRANSACTION
  serial_low();
  serial_output();
  SSTD_t *trans = Transaction_table;
#else
  // recive transaction table index
  uint8_t tid, bits;
  uint8_t pecount = 0;
  sync_recv();
  bits = serial_read_chunk(&pecount,7);
  tid = bits>>3;
  bits = (bits&7) != nibble_bits_count(tid);
  if( bits || pecount> 0 || tid > Transaction_table_size ) {
      return;
  }
  serial_delay_half1();

  serial_high(); // response step1 low->high
  serial_output();
  _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
  SSTD_t *trans = &Transaction_table[tid];
  serial_low(); // response step2 ack high->low
#endif

  // target send phase
  if( trans->target2initiator_buffer_size > 0 )
      serial_send_packet((uint8_t *)trans->target2initiator_buffer,
                         trans->target2initiator_buffer_size);
  // target switch to input
  change_sender2reciver();

  // target recive phase
  if( trans->initiator2target_buffer_size > 0 ) {
      if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
                               trans->initiator2target_buffer_size) ) {
          *trans->status = TRANSACTION_ACCEPTED;
      } else {
          *trans->status = TRANSACTION_DATA_ERROR;
      }
  } else {
      *trans->status = TRANSACTION_ACCEPTED;
  }

  sync_recv(); //weit initiator output to high
}

/////////
//  start transaction by initiator
//
// int  soft_serial_transaction(int sstd_index)
//
// Returns:
//    TRANSACTION_END
//    TRANSACTION_NO_RESPONSE
//    TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_transaction(void) {
  SSTD_t *trans = Transaction_table;
#else
int  soft_serial_transaction(int sstd_index) {
  if( sstd_index > Transaction_table_size )
      return TRANSACTION_TYPE_ERROR;
  SSTD_t *trans = &Transaction_table[sstd_index];
#endif
  cli();

  // signal to the target that we want to start a transaction
  serial_output();
  serial_low();
  _delay_us(SLAVE_INT_WIDTH_US);

#ifndef SERIAL_USE_MULTI_TRANSACTION
  // wait for the target response
  serial_input_with_pullup();
  _delay_us(SLAVE_INT_RESPONSE_TIME);

  // check if the target is present
  if (serial_read_pin()) {
    // target failed to pull the line low, assume not present
    serial_output();
    serial_high();
    *trans->status = TRANSACTION_NO_RESPONSE;
    sei();
    return TRANSACTION_NO_RESPONSE;
  }

#else
  // send transaction table index
  int tid = (sstd_index<<3) | (7 & nibble_bits_count(sstd_index));
  sync_send();
  _delay_sub_us(TID_SEND_ADJUST);
  serial_write_chunk(tid, 7);
  serial_delay_half1();

  // wait for the target response (step1 low->high)
  serial_input_with_pullup();
  while( !serial_read_pin() ) {
      _delay_sub_us(2);
  }

  // check if the target is present (step2 high->low)
  for( int i = 0; serial_read_pin(); i++ ) {
      if (i > SLAVE_INT_ACK_WIDTH + 1) {
          // slave failed to pull the line low, assume not present
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_NO_RESPONSE;
          sei();
          return TRANSACTION_NO_RESPONSE;
      }
      _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
  }
#endif

  // initiator recive phase
  // if the target is present syncronize with it
  if( trans->target2initiator_buffer_size > 0 ) {
      if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
                                trans->target2initiator_buffer_size) ) {
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_DATA_ERROR;
          sei();
          return TRANSACTION_DATA_ERROR;
      }
   }

  // initiator switch to output
  change_reciver2sender();

  // initiator send phase
  if( trans->initiator2target_buffer_size > 0 ) {
      serial_send_packet((uint8_t *)trans->initiator2target_buffer,
                         trans->initiator2target_buffer_size);
  }

  // always, release the line when not in use
  sync_send();

  *trans->status = TRANSACTION_END;
  sei();
  return TRANSACTION_END;
}

#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
    SSTD_t *trans = &Transaction_table[sstd_index];
    cli();
    int retval = *trans->status;
    *trans->status = 0;;
    sei();
    return retval;
}
#endif

#endif

// Helix serial.c history
//   2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc)
//   2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4)
//             (adjusted with avr-gcc 4.9.2)
//   2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78)
//             (adjusted with avr-gcc 4.9.2)
//   2018-8-11 add support multi-type transaction (#3608, feb5e4aae)
//             (adjusted with avr-gcc 4.9.2)
//   2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff)
//             (adjusted with avr-gcc 7.3.0)
//   2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66)
//             (adjusted with avr-gcc 5.4.0, 7.3.0)