~ruther/qmk_firmware

be42c5fb9885d3bcbf47f99ad6cef343ba2b0b97 — Dasky 3 years ago 2d7a2df
Fix RGB heatmap to use XY positions and use correct led limits (#17184)

* Fix RGB heatmap to use XY positions

* lower effect area limit and make configurable

* tidy up macro

* Fix triggering in both directions.

* add docs

* fix bug when decreasing value

* performance tweak
M docs/feature_rgb_matrix.md => docs/feature_rgb_matrix.md +16 -1
@@ 667,7 667,22 @@ In order to change the delay of temperature decrease define `RGB_MATRIX_TYPING_H
#define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 50
```

Heatmap effect may not light up the correct adjacent LEDs for certain key matrix layout such as split keyboards. The following define will limit the effect to pressed keys only:
As heatmap uses the physical position of the leds set in the g_led_config, you may need to tweak the following options to get the best effect for your keyboard. Note the size of this grid is `224x64`.

Limit the distance the effect spreads to surrounding keys. 

```c
#define RGB_MATRIX_TYPING_HEATMAP_SPREAD 40
```

Limit how hot surrounding keys get from each press.

```c
#define RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT 16
```

Remove the spread effect entirely.

```c
#define RGB_MATRIX_TYPING_HEATMAP_SLIM
```

M quantum/rgb_matrix/animations/typing_heatmap_anim.h => quantum/rgb_matrix/animations/typing_heatmap_anim.h +42 -42
@@ 6,30 6,35 @@ RGB_MATRIX_EFFECT(TYPING_HEATMAP)
#            define RGB_MATRIX_TYPING_HEATMAP_DECREASE_DELAY_MS 25
#        endif

#        ifndef RGB_MATRIX_TYPING_HEATMAP_SPREAD
#            define RGB_MATRIX_TYPING_HEATMAP_SPREAD 40
#        endif

#        ifndef RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT
#            define RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT 16
#        endif
void process_rgb_matrix_typing_heatmap(uint8_t row, uint8_t col) {
#        ifdef RGB_MATRIX_TYPING_HEATMAP_SLIM
    // Limit effect to pressed keys
    g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
#        else
    uint8_t m_row = row - 1;
    uint8_t p_row = row + 1;
    uint8_t m_col = col - 1;
    uint8_t p_col = col + 1;

    if (m_col < col) g_rgb_frame_buffer[row][m_col] = qadd8(g_rgb_frame_buffer[row][m_col], 16);
    g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
    if (p_col < MATRIX_COLS) g_rgb_frame_buffer[row][p_col] = qadd8(g_rgb_frame_buffer[row][p_col], 16);

    if (p_row < MATRIX_ROWS) {
        if (m_col < col) g_rgb_frame_buffer[p_row][m_col] = qadd8(g_rgb_frame_buffer[p_row][m_col], 13);
        g_rgb_frame_buffer[p_row][col] = qadd8(g_rgb_frame_buffer[p_row][col], 16);
        if (p_col < MATRIX_COLS) g_rgb_frame_buffer[p_row][p_col] = qadd8(g_rgb_frame_buffer[p_row][p_col], 13);
    }

    if (m_row < row) {
        if (m_col < col) g_rgb_frame_buffer[m_row][m_col] = qadd8(g_rgb_frame_buffer[m_row][m_col], 13);
        g_rgb_frame_buffer[m_row][col] = qadd8(g_rgb_frame_buffer[m_row][col], 16);
        if (p_col < MATRIX_COLS) g_rgb_frame_buffer[m_row][p_col] = qadd8(g_rgb_frame_buffer[m_row][p_col], 13);
    for (uint8_t i_row = 0; i_row < MATRIX_ROWS; i_row++) {
        for (uint8_t i_col = 0; i_col < MATRIX_COLS; i_col++) {
            if (i_row == row && i_col == col) {
                g_rgb_frame_buffer[row][col] = qadd8(g_rgb_frame_buffer[row][col], 32);
            } else {
#            define LED_DISTANCE(led_a, led_b) sqrt16(((int8_t)(led_a.x - led_b.x) * (int8_t)(led_a.x - led_b.x)) + ((int8_t)(led_a.y - led_b.y) * (int8_t)(led_a.y - led_b.y)))
                uint8_t distance = LED_DISTANCE(g_led_config.point[g_led_config.matrix_co[row][col]], g_led_config.point[g_led_config.matrix_co[i_row][i_col]]);
#            undef LED_DISTANCE
                if (distance <= RGB_MATRIX_TYPING_HEATMAP_SPREAD) {
                    uint8_t amount = qsub8(RGB_MATRIX_TYPING_HEATMAP_SPREAD, distance);
                    if (amount > RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT) {
                        amount = RGB_MATRIX_TYPING_HEATMAP_AREA_LIMIT;
                    }
                    g_rgb_frame_buffer[i_row][i_col] = qadd8(g_rgb_frame_buffer[i_row][i_col], amount);
                }
            }
        }
    }
#        endif
}


@@ 40,10 45,7 @@ static uint16_t heatmap_decrease_timer;
static bool decrease_heatmap_values;

bool TYPING_HEATMAP(effect_params_t* params) {
    // Modified version of RGB_MATRIX_USE_LIMITS to work off of matrix row / col size
    uint8_t led_min = RGB_MATRIX_LED_PROCESS_LIMIT * params->iter;
    uint8_t led_max = led_min + RGB_MATRIX_LED_PROCESS_LIMIT;
    if (led_max > sizeof(g_rgb_frame_buffer)) led_max = sizeof(g_rgb_frame_buffer);
    RGB_MATRIX_USE_LIMITS(led_min, led_max);

    if (params->init) {
        rgb_matrix_set_color_all(0, 0, 0);


@@ 63,28 65,26 @@ bool TYPING_HEATMAP(effect_params_t* params) {
    }

    // Render heatmap & decrease
    for (int i = led_min; i < led_max; i++) {
        uint8_t row = i % MATRIX_ROWS;
        uint8_t col = i / MATRIX_ROWS;
        uint8_t val = g_rgb_frame_buffer[row][col];

        // set the pixel colour
        uint8_t led[LED_HITS_TO_REMEMBER];
        uint8_t led_count = rgb_matrix_map_row_column_to_led(row, col, led);
        for (uint8_t j = 0; j < led_count; ++j) {
            if (!HAS_ANY_FLAGS(g_led_config.flags[led[j]], params->flags)) continue;

            HSV hsv = {170 - qsub8(val, 85), rgb_matrix_config.hsv.s, scale8((qadd8(170, val) - 170) * 3, rgb_matrix_config.hsv.v)};
            RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
            rgb_matrix_set_color(led[j], rgb.r, rgb.g, rgb.b);
        }

        if (decrease_heatmap_values) {
            g_rgb_frame_buffer[row][col] = qsub8(val, 1);
    uint8_t count = 0;
    for (uint8_t row = 0; row < MATRIX_ROWS && count < RGB_MATRIX_LED_PROCESS_LIMIT; row++) {
        for (uint8_t col = 0; col < MATRIX_COLS && RGB_MATRIX_LED_PROCESS_LIMIT; col++) {
            if (g_led_config.matrix_co[row][col] >= led_min && g_led_config.matrix_co[row][col] < led_max) {
                count++;
                uint8_t val = g_rgb_frame_buffer[row][col];
                if (!HAS_ANY_FLAGS(g_led_config.flags[g_led_config.matrix_co[row][col]], params->flags)) continue;

                HSV hsv = {170 - qsub8(val, 85), rgb_matrix_config.hsv.s, scale8((qadd8(170, val) - 170) * 3, rgb_matrix_config.hsv.v)};
                RGB rgb = rgb_matrix_hsv_to_rgb(hsv);
                rgb_matrix_set_color(g_led_config.matrix_co[row][col], rgb.r, rgb.g, rgb.b);

                if (decrease_heatmap_values) {
                    g_rgb_frame_buffer[row][col] = qsub8(val, 1);
                }
            }
        }
    }

    return led_max < sizeof(g_rgb_frame_buffer);
    return rgb_matrix_check_finished_leds(led_max);
}

#    endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS

M quantum/rgb_matrix/rgb_matrix.c => quantum/rgb_matrix/rgb_matrix.c +9 -2
@@ 249,8 249,15 @@ void process_rgb_matrix(uint8_t row, uint8_t col, bool pressed) {
#endif // RGB_MATRIX_KEYREACTIVE_ENABLED

#if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP)
    if (rgb_matrix_config.mode == RGB_MATRIX_TYPING_HEATMAP) {
        process_rgb_matrix_typing_heatmap(row, col);
#    if defined(RGB_MATRIX_KEYRELEASES)
    if (!pressed)
#    else
    if (pressed)
#    endif // defined(RGB_MATRIX_KEYRELEASES)
    {
        if (rgb_matrix_config.mode == RGB_MATRIX_TYPING_HEATMAP) {
            process_rgb_matrix_typing_heatmap(row, col);
        }
    }
#endif // defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP)
}