~ruther/qmk_firmware

bad56a4f2b91fc8591f6d33a1710ea0050abcfbf — Jack Humbert 7 years ago b8564f5
adds timeout to avr i2c
M drivers/avr/i2c_master.c => drivers/avr/i2c_master.c +77 -12
@@ 6,6 6,7 @@
#include <util/twi.h>

#include "i2c_master.h"
#include "timer.h"

#define F_SCL 400000UL // SCL frequency
#define Prescaler 1


@@ 24,8 25,18 @@ uint8_t i2c_start(uint8_t address)
	TWCR = 0;
	// transmit START condition
	TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
	// wait for end of transmission
	while( !(TWCR & (1<<TWINT)) );

  #ifdef I2C_TIMEOUT
    uint16_t timeout_timer = timer_read();
    while( !(TWCR & (1<<TWINT)) ) {
      if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
  // wait for end of transmission
    while( !(TWCR & (1<<TWINT)) );
  #endif

	// check if the start condition was successfully transmitted
	if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return 1; }


@@ 34,8 45,18 @@ uint8_t i2c_start(uint8_t address)
	TWDR = address;
	// start transmission of address
	TWCR = (1<<TWINT) | (1<<TWEN);
	// wait for end of transmission
	while( !(TWCR & (1<<TWINT)) );

  #ifdef I2C_TIMEOUT
    timeout_timer = timer_read();
    while( !(TWCR & (1<<TWINT)) ) {
      if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
  // wait for end of transmission
    while( !(TWCR & (1<<TWINT)) );
  #endif

	// check if the device has acknowledged the READ / WRITE mode
	uint8_t twst = TW_STATUS & 0xF8;


@@ 50,8 71,18 @@ uint8_t i2c_write(uint8_t data)
	TWDR = data;
	// start transmission of data
	TWCR = (1<<TWINT) | (1<<TWEN);

  #ifdef I2C_TIMEOUT
    uint16_t timeout_timer = timer_read();
    while( !(TWCR & (1<<TWINT)) ) {
      if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
	// wait for end of transmission
	while( !(TWCR & (1<<TWINT)) );
    while( !(TWCR & (1<<TWINT)) );
  #endif

	if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return 1; }



@@ 63,8 94,19 @@ uint8_t i2c_read_ack(void)

	// start TWI module and acknowledge data after reception
	TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
	// wait for end of transmission
	while( !(TWCR & (1<<TWINT)) );

  #ifdef I2C_TIMEOUT
    uint16_t timeout_timer = timer_read();
    while( !(TWCR & (1<<TWINT)) ) {
      if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
  // wait for end of transmission
    while( !(TWCR & (1<<TWINT)) );
  #endif

	// return received data from TWDR
	return TWDR;
}


@@ 74,8 116,19 @@ uint8_t i2c_read_nack(void)

	// start receiving without acknowledging reception
	TWCR = (1<<TWINT) | (1<<TWEN);
	// wait for end of transmission
	while( !(TWCR & (1<<TWINT)) );

    #ifdef I2C_TIMEOUT
    uint16_t timeout_timer = timer_read();
    while( !(TWCR & (1<<TWINT)) ) {
      if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
  // wait for end of transmission
    while( !(TWCR & (1<<TWINT)) );
  #endif

	// return received data from TWDR
	return TWDR;
}


@@ 144,10 197,22 @@ uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t le
	return 0;
}

void i2c_stop(void)
uint8_t i2c_stop(void)
{
	// transmit STOP condition
	TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
  // wait until stop condition is executed and bus released
  while(TWCR & (1<<TWSTO));

  #ifdef I2C_TIMEOUT
    uint16_t timeout_timer = timer_read();
    while(TWCR & (1<<TWSTO)) {
        if ((timer_read() - timeout_timer) > I2C_TIMEOUT) {
        return 2; // should make these codes standard
      }
    }
  #else
    // wait for end of transmission
    while(TWCR & (1<<TWSTO));
  #endif

  return 0;
}

M drivers/avr/i2c_master.h => drivers/avr/i2c_master.h +1 -1
@@ 17,6 17,6 @@ uint8_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length);
uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length);
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length);
uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length);
void i2c_stop(void);
uint8_t i2c_stop(void);

#endif // I2C_MASTER_H

M drivers/avr/is31fl3731.c => drivers/avr/is31fl3731.c +32 -24
@@ 78,18 78,19 @@ bool g_led_control_registers_update_required = false;
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09


void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
	g_twi_transfer_buffer[0] = reg;
	g_twi_transfer_buffer[1] = data;

	//Transmit data until succesful
  //while(i2c_transmit(addr << 1, g_twi_transfer_buffer,2) != 0);
  i2c_transmit(addr << 1, g_twi_transfer_buffer,2);
  return i2c_transmit(addr << 1, g_twi_transfer_buffer,2);
}

void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
  uint8_t ret = 0;
	// assumes bank is already selected

	// transmit PWM registers in 9 transfers of 16 bytes


@@ 110,64 111,67 @@ void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )

		//Transmit buffer until succesful
		//while(i2c_transmit(addr << 1, g_twi_transfer_buffer,17) != 0);
    i2c_transmit(addr << 1, g_twi_transfer_buffer,17);

    ret |= i2c_transmit(addr << 1, g_twi_transfer_buffer, 17);
	}
  return ret;
}

void IS31FL3731_init( uint8_t addr )
uint8_t IS31FL3731_init( uint8_t addr )
{
  uint8_t ret = 0;
	// In order to avoid the LEDs being driven with garbage data
	// in the LED driver's PWM registers, first enable software shutdown,
	// then set up the mode and other settings, clear the PWM registers,
	// then disable software shutdown.

	// select "function register" bank
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// enable software shutdown
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
	ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
	// this delay was copied from other drivers, might not be needed
	_delay_ms( 10 );

	// picture mode
	IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
	ret |= IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
	// display frame 0
	IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
	ret |= IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
	// audio sync off
	IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
	ret |= IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );

	// select bank 0
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );

	// turn off all LEDs in the LED control register
	for ( int i = 0x00; i <= 0x11; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
	}

	// turn off all LEDs in the blink control register (not really needed)
	for ( int i = 0x12; i <= 0x23; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
	}

	// set PWM on all LEDs to 0
	for ( int i = 0x24; i <= 0xB3; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
	}

	// select "function register" bank
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// disable software shutdown
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
	ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );

	// select bank 0 and leave it selected.
	// most usage after initialization is just writing PWM buffers in bank 0
	// as there's not much point in double-buffering
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );

  return ret;
}

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )


@@ 223,25 227,29 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b

}

void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
  uint8_t ret = 0;
	if ( g_pwm_buffer_update_required )
	{
		IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
		IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
		ret |= IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
		ret |= IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
	}
	g_pwm_buffer_update_required = false;
  return ret;
}

void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
  uint8_t ret = 0;
	if ( g_led_control_registers_update_required )
	{
		for ( int i=0; i<18; i++ )
		{
			IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
			IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
			ret |= IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
			ret |= IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
		}
	}
  return ret;
}


M drivers/avr/is31fl3731.h => drivers/avr/is31fl3731.h +5 -5
@@ 31,9 31,9 @@ typedef struct is31_led {

extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];

void IS31FL3731_init( uint8_t addr );
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );
uint8_t IS31FL3731_init( uint8_t addr );
uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );


@@ 44,8 44,8 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );
uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );

#define C1_1  0x24
#define C1_2  0x25

M keyboards/ergodox_ez/config.h => keyboards/ergodox_ez/config.h +2 -0
@@ 138,4 138,6 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
//#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE

#define I2C_TIMEOUT 1000

#endif

M quantum/quantum.c => quantum/quantum.c +1 -1
@@ 854,7 854,7 @@ void matrix_init_quantum() {
    audio_init();
  #endif
  #ifdef RGB_MATRIX_ENABLE
    rgb_matrix_init_drivers();
    rgb_matrix_init();
  #endif
  matrix_init_kb();
}

M quantum/rgb_matrix.c => quantum/rgb_matrix.c +47 -40
@@ 101,10 101,14 @@ void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t
    }
}


void rgb_matrix_update_pwm_buffers(void) {
    IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    uint8_t ret = IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    ret |= IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    if (ret == 2) {
      wait_ms(1000);
      i2c_stop();
      rgb_matrix_setup_drivers();
    }
}

void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {


@@ 115,7 119,6 @@ void rgb_matrix_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) {
    IS31FL3731_set_color_all( red, green, blue );
}


bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record) {
    if ( record->event.pressed ) {
        uint8_t led[8], led_count;


@@ 218,7 221,7 @@ void rgb_matrix_single_LED_test(void) {
}

// All LEDs off
void rgb_matrix_all_off(void) { 
void rgb_matrix_all_off(void) {
    rgb_matrix_set_color_all( 0, 0, 0 );
}



@@ 244,7 247,7 @@ void rgb_matrix_solid_reactive(void) {

// alphas = color1, mods = color2
void rgb_matrix_alphas_mods(void) {
 

    RGB rgb1 = hsv_to_rgb( (HSV){ .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
    RGB rgb2 = hsv_to_rgb( (HSV){ .h = (rgb_matrix_config.hue + 180) % 360, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );



@@ 722,40 725,44 @@ void rgb_matrix_indicators_user(void) {}
//  }
// }

void rgb_matrix_init_drivers(void) {
    // Initialize TWI
    i2c_init();
    IS31FL3731_init( DRIVER_ADDR_1 );
    IS31FL3731_init( DRIVER_ADDR_2 );

    for ( int index = 0; index < DRIVER_LED_TOTAL; index++ ) {
        bool enabled = true;
        // This only caches it for later
        IS31FL3731_set_led_control_register( index, enabled, enabled, enabled );
    }
    // This actually updates the LED drivers
    IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );

    // TODO: put the 1 second startup delay here?

    // clear the key hits
    for ( int led=0; led<DRIVER_LED_TOTAL; led++ ) {
        g_key_hit[led] = 255;
    }


    if (!eeconfig_is_enabled()) {
        dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
        eeconfig_init();
        eeconfig_update_rgb_matrix_default();
    }
    rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
    if (!rgb_matrix_config.mode) {
        dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
        eeconfig_update_rgb_matrix_default();
        rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
    }
    eeconfig_debug_rgb_matrix(); // display current eeprom values
void rgb_matrix_init(void) {
  rgb_matrix_setup_drivers();

  // TODO: put the 1 second startup delay here?

  // clear the key hits
  for ( int led=0; led<DRIVER_LED_TOTAL; led++ ) {
      g_key_hit[led] = 255;
  }


  if (!eeconfig_is_enabled()) {
      dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
      eeconfig_init();
      eeconfig_update_rgb_matrix_default();
  }
  rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
  if (!rgb_matrix_config.mode) {
      dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
      eeconfig_update_rgb_matrix_default();
      rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
  }
  eeconfig_debug_rgb_matrix(); // display current eeprom values
}

void rgb_matrix_setup_drivers(void) {
  // Initialize TWI
  i2c_init();
  IS31FL3731_init( DRIVER_ADDR_1 );
  IS31FL3731_init( DRIVER_ADDR_2 );

  for ( int index = 0; index < DRIVER_LED_TOTAL; index++ ) {
    bool enabled = true;
    // This only caches it for later
    IS31FL3731_set_led_control_register( index, enabled, enabled, enabled );
  }
  // This actually updates the LED drivers
  IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}

// Deals with the messy details of incrementing an integer

M quantum/rgb_matrix.h => quantum/rgb_matrix.h +2 -1
@@ 95,7 95,8 @@ void rgb_matrix_indicators_user(void);

void rgb_matrix_single_LED_test(void);

void rgb_matrix_init_drivers(void);
void rgb_matrix_init(void);
void rgb_matrix_setup_drivers(void);

void rgb_matrix_set_suspend_state(bool state);
void rgb_matrix_set_indicator_state(uint8_t state);