~ruther/qmk_firmware

9d9cdaaa2d035787b0b50c26f2975695fdbc16f4 — Nick Brassel 1 year, 2 months ago 2eb9ff8
Add encoder abstraction. (#21548)

50 files changed, 852 insertions(+), 642 deletions(-)

M builddefs/common_features.mk
M data/mappings/info_rules.hjson
M data/schemas/keyboard.jsonschema
A drivers/encoder/encoder_quadrature.c
M keyboards/mechwild/sugarglider/matrix.c
D keyboards/pica40/rev2/post_rules.mk
M keyboards/pica40/rev2/rev2.c
M keyboards/planck/rev7/info.json
M keyboards/planck/rev7/matrix.c
M keyboards/ploopyco/mouse/config.h
M keyboards/ploopyco/mouse/info.json
M keyboards/ploopyco/mouse/mouse.c
M keyboards/ploopyco/mouse/rules.mk
M keyboards/ploopyco/trackball/config.h
M keyboards/ploopyco/trackball/info.json
M keyboards/ploopyco/trackball/rules.mk
M keyboards/ploopyco/trackball/trackball.c
M keyboards/ploopyco/trackball_mini/config.h
M keyboards/ploopyco/trackball_mini/info.json
M keyboards/ploopyco/trackball_mini/rules.mk
M keyboards/ploopyco/trackball_mini/trackball_mini.c
M keyboards/ploopyco/trackball_thumb/config.h
M keyboards/ploopyco/trackball_thumb/info.json
D keyboards/ploopyco/trackball_thumb/post_rules.mk
M keyboards/ploopyco/trackball_thumb/trackball_thumb.c
M keyboards/ploopyco/trackball_thumb/trackball_thumb.h
M quantum/encoder.c
M quantum/encoder.h
A quantum/encoder/tests/config_encoder_common.h
M quantum/encoder/tests/config_mock.h
M quantum/encoder/tests/config_mock_split_left_eq_right.h
M quantum/encoder/tests/config_mock_split_left_gt_right.h
M quantum/encoder/tests/config_mock_split_left_lt_right.h
M quantum/encoder/tests/config_mock_split_no_left.h
M quantum/encoder/tests/config_mock_split_no_right.h
M quantum/encoder/tests/config_mock_split_role.h
M quantum/encoder/tests/encoder_tests.cpp
M quantum/encoder/tests/encoder_tests_split_left_eq_right.cpp
M quantum/encoder/tests/encoder_tests_split_left_gt_right.cpp
M quantum/encoder/tests/encoder_tests_split_left_lt_right.cpp
M quantum/encoder/tests/encoder_tests_split_no_left.cpp
M quantum/encoder/tests/encoder_tests_split_no_right.cpp
M quantum/encoder/tests/encoder_tests_split_role.cpp
M quantum/encoder/tests/mock_split.c
M quantum/encoder/tests/mock_split.h
M quantum/encoder/tests/rules.mk
M quantum/keyboard.c
M quantum/split_common/transaction_id_define.h
M quantum/split_common/transactions.c
M quantum/split_common/transport.h
M builddefs/common_features.mk => builddefs/common_features.mk +15 -0
@@ 886,9 886,24 @@ ifeq ($(strip $(BLUETOOTH_ENABLE)), yes)
    endif
endif

ENCODER_ENABLE ?= no
ENCODER_DRIVER ?= quadrature
VALID_ENCODER_DRIVER_TYPES := quadrature custom
ifeq ($(strip $(ENCODER_ENABLE)), yes)
    ifeq ($(filter $(ENCODER_DRIVER),$(VALID_ENCODER_DRIVER_TYPES)),)
        $(call CATASTROPHIC_ERROR,Invalid ENCODER_DRIVER,ENCODER_DRIVER="$(ENCODER_DRIVER)" is not a valid encoder driver)
    endif
    SRC += $(QUANTUM_DIR)/encoder.c
    OPT_DEFS += -DENCODER_ENABLE
    OPT_DEFS += -DENCODER_DRIVER_$(strip $(shell echo $(ENCODER_DRIVER) | tr '[:lower:]' '[:upper:]'))

    COMMON_VPATH += $(PLATFORM_PATH)/$(PLATFORM_KEY)/$(DRIVER_DIR)/encoder
    COMMON_VPATH += $(DRIVER_PATH)/encoder

    ifneq ($(strip $(ENCODER_DRIVER)), custom)
        SRC += encoder_$(strip $(ENCODER_DRIVER)).c
    endif

    ifeq ($(strip $(ENCODER_MAP_ENABLE)), yes)
        OPT_DEFS += -DENCODER_MAP_ENABLE
    endif

M data/mappings/info_rules.hjson => data/mappings/info_rules.hjson +1 -0
@@ 21,6 21,7 @@
    "DEBOUNCE_TYPE": {"info_key": "build.debounce_type"},
    "EEPROM_DRIVER": {"info_key": "eeprom.driver"},
    "ENCODER_ENABLE": {"info_key": "encoder.enabled", "value_type": "bool"},
    "ENCODER_DRIVER": {"info_key": "encoder.driver"},
    "FIRMWARE_FORMAT": {"info_key": "build.firmware_format"},
    "KEYBOARD_SHARED_EP": {"info_key": "usb.shared_endpoint.keyboard", "value_type": "bool"},
    "LAYOUTS": {"info_key": "community_layouts", "value_type": "list"},

M data/schemas/keyboard.jsonschema => data/schemas/keyboard.jsonschema +4 -0
@@ 6,6 6,10 @@
        "encoder_config": {
            "type": "object",
            "properties": {
                "driver": {
                    "type": "string",
                    "enum": ["quadrature", "custom"]
                },
                "rotary": {
                    "type": "array",
                    "items": {

A drivers/encoder/encoder_quadrature.c => drivers/encoder/encoder_quadrature.c +213 -0
@@ 0,0 1,213 @@
// Copyright 2018 Jack Humbert <jack.humb@gmail.com>
// Copyright 2018-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later

#include <stdint.h>
#include "encoder.h"
#include "gpio.h"
#include "keyboard.h"
#include "action.h"
#include "keycodes.h"
#include "wait.h"

#ifdef SPLIT_KEYBOARD
#    include "split_util.h"
#endif

// for memcpy
#include <string.h>

#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
#    define ENCODER_RESOLUTION 4
#endif

#undef ENCODER_DEFAULT_PIN_API_IMPL
#if defined(ENCODERS_PAD_A) && defined(ENCODERS_PAD_B)
// Inform the quadrature driver that it needs to implement pin init/read functions
#    define ENCODER_DEFAULT_PIN_API_IMPL
#endif

extern volatile bool isLeftHand;

__attribute__((weak)) void    encoder_quadrature_init_pin(uint8_t index, bool pad_b);
__attribute__((weak)) uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b);

#ifdef ENCODER_DEFAULT_PIN_API_IMPL

static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A;
static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B;

__attribute__((weak)) void encoder_wait_pullup_charge(void) {
    wait_us(100);
}

__attribute__((weak)) void encoder_quadrature_init_pin(uint8_t index, bool pad_b) {
    pin_t pin = pad_b ? encoders_pad_b[index] : encoders_pad_a[index];
    if (pin != NO_PIN) {
        gpio_set_pin_input_high(pin);
    }
}

__attribute__((weak)) uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
    pin_t pin = pad_b ? encoders_pad_b[index] : encoders_pad_a[index];
    if (pin != NO_PIN) {
        return gpio_read_pin(pin) ? 1 : 0;
    }
    return 0;
}

#endif // ENCODER_DEFAULT_PIN_API_IMPL

#ifdef ENCODER_RESOLUTIONS
static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS;
#endif

#ifndef ENCODER_DIRECTION_FLIP
#    define ENCODER_CLOCKWISE true
#    define ENCODER_COUNTER_CLOCKWISE false
#else
#    define ENCODER_CLOCKWISE false
#    define ENCODER_COUNTER_CLOCKWISE true
#endif
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};

static uint8_t encoder_state[NUM_ENCODERS]  = {0};
static int8_t  encoder_pulses[NUM_ENCODERS] = {0};

// encoder counts
static uint8_t thisCount;
#ifdef SPLIT_KEYBOARD
// encoder offsets for each hand
static uint8_t thisHand, thatHand;
// encoder counts for each hand
static uint8_t thatCount;
#endif

__attribute__((weak)) void encoder_quadrature_post_init_kb(void) {
    extern void encoder_quadrature_handle_read(uint8_t index, uint8_t pin_a_state, uint8_t pin_b_state);
    // Unused normally, but can be used for things like setting up pin-change interrupts in keyboard code.
    // During the interrupt, read the pins then call `encoder_handle_read()` with the pin states and it'll queue up an encoder event if needed.
}

void encoder_quadrature_post_init(void) {
#ifdef ENCODER_DEFAULT_PIN_API_IMPL
    for (uint8_t i = 0; i < thisCount; i++) {
        encoder_quadrature_init_pin(i, false);
        encoder_quadrature_init_pin(i, true);
    }
    encoder_wait_pullup_charge();
    for (uint8_t i = 0; i < thisCount; i++) {
        encoder_state[i] = (encoder_quadrature_read_pin(i, false) << 0) | (encoder_quadrature_read_pin(i, true) << 1);
    }
#else
    memset(encoder_state, 0, sizeof(encoder_state));
#endif

    encoder_quadrature_post_init_kb();
}

void encoder_driver_init(void) {
#ifdef SPLIT_KEYBOARD
    thisHand  = isLeftHand ? 0 : NUM_ENCODERS_LEFT;
    thatHand  = NUM_ENCODERS_LEFT - thisHand;
    thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT;
    thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT;
#else // SPLIT_KEYBOARD
    thisCount                = NUM_ENCODERS;
#endif

#ifdef ENCODER_TESTS
    // Annoying that we have to clear out values during initialisation here, but
    // because all the arrays are static locals, rerunning tests in the same
    // executable doesn't reset any of these. Kinda crappy having test-only code
    // here, but it's the simplest solution.
    memset(encoder_state, 0, sizeof(encoder_state));
    memset(encoder_pulses, 0, sizeof(encoder_pulses));
    const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A;
    const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B;
    for (uint8_t i = 0; i < thisCount; i++) {
        encoders_pad_a[i] = encoders_pad_a_left[i];
        encoders_pad_b[i] = encoders_pad_b_left[i];
    }
#endif

#if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
    // Re-initialise the pads if it's the right-hand side
    if (!isLeftHand) {
        const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT;
        const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT;
        for (uint8_t i = 0; i < thisCount; i++) {
            encoders_pad_a[i] = encoders_pad_a_right[i];
            encoders_pad_b[i] = encoders_pad_b_right[i];
        }
    }
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)

    // Encoder resolutions is defined differently in config.h, so concatenate
#if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
#    if defined(ENCODER_RESOLUTIONS_RIGHT)
    static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT;
#    else  // defined(ENCODER_RESOLUTIONS_RIGHT)
    static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS;
#    endif // defined(ENCODER_RESOLUTIONS_RIGHT)
    for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) {
        encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i];
    }
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)

    encoder_quadrature_post_init();
}

static void encoder_handle_state_change(uint8_t index, uint8_t state) {
    uint8_t i = index;

#ifdef SPLIT_KEYBOARD
    index += thisHand;
#endif

#ifdef ENCODER_RESOLUTIONS
    const uint8_t resolution = encoder_resolutions[index];
#else
    const uint8_t resolution = ENCODER_RESOLUTION;
#endif

    encoder_pulses[i] += encoder_LUT[state & 0xF];

#ifdef ENCODER_DEFAULT_POS
    if ((encoder_pulses[i] >= resolution) || (encoder_pulses[i] <= -resolution) || ((state & 0x3) == ENCODER_DEFAULT_POS)) {
        if (encoder_pulses[i] >= 1) {
#else
    if (encoder_pulses[i] >= resolution) {
#endif

            encoder_queue_event(index, ENCODER_COUNTER_CLOCKWISE);
        }

#ifdef ENCODER_DEFAULT_POS
        if (encoder_pulses[i] <= -1) {
#else
    if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
#endif
            encoder_queue_event(index, ENCODER_CLOCKWISE);
        }
        encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS
        encoder_pulses[i] = 0;
    }
#endif
}

void encoder_quadrature_handle_read(uint8_t index, uint8_t pin_a_state, uint8_t pin_b_state) {
    uint8_t state = pin_a_state | (pin_b_state << 1);
    if ((encoder_state[index] & 0x3) != state) {
        encoder_state[index] <<= 2;
        encoder_state[index] |= state;
        encoder_handle_state_change(index, encoder_state[index]);
    }
}

__attribute__((weak)) void encoder_driver_task(void) {
    for (uint8_t i = 0; i < thisCount; i++) {
        encoder_quadrature_handle_read(i, encoder_quadrature_read_pin(i, false), encoder_quadrature_read_pin(i, true));
    }
}

M keyboards/mechwild/sugarglider/matrix.c => keyboards/mechwild/sugarglider/matrix.c +4 -2
@@ 50,7 50,7 @@ static void select_row(uint8_t row) {
        //wait_us(100);
        return;
    }
    

    if (row > 1) {
        mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTB, ALL_INPUT);
        mcp23018_errors += !mcp23018_set_config(I2C_ADDR, mcp23018_PORTA, ~(row_pos[row]));


@@ 87,8 87,10 @@ bool matrix_scan_custom(matrix_row_t current_matrix[]) {
    bool changed = false;
    for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
        changed |= read_cols_on_row(current_matrix, current_row);

#ifdef ENCODER_ENABLE
        encoder_read();
        // Need to frequently read the encoder pins while scanning because the I/O expander takes a long time in comparison.
        encoder_driver_task();
#endif
    }
    return changed;

D keyboards/pica40/rev2/post_rules.mk => keyboards/pica40/rev2/post_rules.mk +0 -8
@@ 1,8 0,0 @@
# if ENCODER_ENABLE is set, add defines but avoid adding encoder.c as it's replaced by custom code in rev2.c
ifeq ($(strip $(ENCODER_ENABLE)), yes)
	ENCODER_ENABLE := no
    OPT_DEFS += -DENCODER_ENABLE
    ifeq ($(strip $(ENCODER_MAP_ENABLE)), yes)
        OPT_DEFS += -DENCODER_MAP_ENABLE
    endif
endif

M keyboards/pica40/rev2/rev2.c => keyboards/pica40/rev2/rev2.c +17 -81
@@ 2,99 2,29 @@
// SPDX-License-Identifier: GPL-2.0-or-later

#include "rev2.h"
#include "gpio.h"

#ifdef ENCODER_ENABLE // code based on encoder.c

static const pin_t encoders_pad_a[] = ENCODERS_PAD_A;
static const pin_t encoders_pad_b[] = ENCODERS_PAD_B;

static int8_t  encoder_LUT[]  = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
static uint8_t encoder_state  = 3;
static int8_t  encoder_pulses = 0;
static uint8_t encoder_value  = 0;

typedef struct encoder_sync_data {
    int value;
} encoder_sync_data;
#define ENCODER_PIN_A (((pin_t[])ENCODERS_PAD_A)[0])
#define ENCODER_PIN_B (((pin_t[])ENCODERS_PAD_B)[0])

// custom handler that returns encoder B pin status from slave side
void encoder_sync_slave_handler(uint8_t in_buflen, const void *in_data, uint8_t out_buflen, void *out_data) {
    encoder_sync_data *data = (encoder_sync_data *)out_data;
    data->value = readPin(encoders_pad_b[0]);
}

__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) {
    return true;
    *(uint8_t *)out_data = readPin(ENCODER_PIN_B) ? 1 : 0;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!encoder_update_user(index, clockwise)) return false;

    tap_code(clockwise ? KC_VOLU : KC_VOLD);
void encoder_quadrature_init_pin(uint8_t index, bool pad_b) {}

    return false;
}

#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
    action_exec(clockwise ? ENCODER_CW_EVENT(index, true) : ENCODER_CCW_EVENT(index, true));
    wait_ms(ENCODER_MAP_KEY_DELAY);
    action_exec(clockwise ? ENCODER_CW_EVENT(index, false) : ENCODER_CCW_EVENT(index, false));
    wait_ms(ENCODER_MAP_KEY_DELAY);
}
#endif // ENCODER_MAP_ENABLE

void encoder_init(void) {
    setPinInputHigh(encoders_pad_a[0]);
    setPinInputHigh(encoders_pad_b[0]);
    wait_us(100);
    transaction_register_rpc(ENCODER_SYNC, encoder_sync_slave_handler);
}

bool encoder_read(void) {
    // ignore if running on slave side
    if (!is_keyboard_master()) return false;

    bool changed = false;
    encoder_sync_data data = {0};
    // request pin B status from slave side
    if (transaction_rpc_recv(ENCODER_SYNC, sizeof(data), &data)) {
        uint8_t new_status = (readPin(encoders_pad_a[0]) << 0) | (data.value << 1);
        if ((encoder_state & 0x3) != new_status) {
            encoder_state <<= 2;
            encoder_state |= new_status;
            encoder_pulses += encoder_LUT[encoder_state & 0xF];

            if (encoder_pulses >= ENCODER_RESOLUTION) {
                encoder_value++;
                changed = true;
#ifdef ENCODER_MAP_ENABLE
                encoder_exec_mapping(0, false);
#else  // ENCODER_MAP_ENABLE
                encoder_update_kb(0, false);
#endif // ENCODER_MAP_ENABLE
            }

            if (encoder_pulses <= -ENCODER_RESOLUTION) {
                encoder_value--;
                changed = true;
#ifdef ENCODER_MAP_ENABLE
                encoder_exec_mapping(0, true);
#else  // ENCODER_MAP_ENABLE
                encoder_update_kb(0, true);
#endif // ENCODER_MAP_ENABLE
            }

            encoder_pulses %= ENCODER_RESOLUTION;
        }
uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
    if(pad_b) {
        uint8_t data = 0;
        transaction_rpc_recv(ENCODER_SYNC, sizeof(data), &data);
        return data;
    }
    return changed;
    return readPin(ENCODER_PIN_A) ? 1 : 0;
}

// do not use standard split encoder transactions
void encoder_state_raw(uint8_t *slave_state) {}
void encoder_update_raw(uint8_t *slave_state) {}

#endif // ENCODER_ENABLE

#ifdef PICA40_RGBLIGHT_TIMEOUT


@@ 125,6 55,12 @@ bool should_set_rgblight = false;
void keyboard_post_init_kb(void) {
    setPinOutput(PICA40_RGB_POWER_PIN);

#ifdef ENCODER_ENABLE
    setPinInputHigh(ENCODER_PIN_A);
    setPinInputHigh(ENCODER_PIN_B);
    transaction_register_rpc(ENCODER_SYNC, encoder_sync_slave_handler);
#endif // ENCODER_ENABLE

#ifdef PICA40_RGBLIGHT_TIMEOUT
    idle_timer = timer_read();
    check_rgblight_timer = timer_read();

M keyboards/planck/rev7/info.json => keyboards/planck/rev7/info.json +8 -1
@@ 26,7 26,14 @@
  },
  "encoder": {
    "rotary": [
      {"pin_a": "B12", "pin_b": "B13"}
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"},
        {"pin_a": "B12", "pin_b": "B13"}
    ]
  },
  "features": {

M keyboards/planck/rev7/matrix.c => keyboards/planck/rev7/matrix.c +11 -75
@@ 32,31 32,16 @@
#define STM32_IWDG_RL_MS(s) STM32_IWDG_RL_US(s * 1000.0)
#define STM32_IWDG_RL_S(s) STM32_IWDG_RL_US(s * 1000000.0)

#if !defined(PLANCK_ENCODER_RESOLUTION)
#    define PLANCK_ENCODER_RESOLUTION 4
#endif

#if !defined(PLANCK_WATCHDOG_TIMEOUT)
#   define PLANCK_WATCHDOG_TIMEOUT 1.0
#endif

#ifdef ENCODER_MAP_ENABLE
#error "The encoder map feature is not currently supported by the Planck's encoder matrix"
#endif

/* matrix state(1:on, 0:off) */
static pin_t matrix_row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t matrix_col_pins[MATRIX_COLS] = MATRIX_COL_PINS;

static matrix_row_t matrix_inverted[MATRIX_COLS];

#ifdef ENCODER_ENABLE
int8_t  encoder_LUT[]     = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
uint8_t encoder_state[8]  = {0};
int8_t  encoder_pulses[8] = {0};
uint8_t encoder_value[8]  = {0};
#endif

void matrix_init_custom(void) {
    // actual matrix setup - cols
    for (int i = 0; i < MATRIX_COLS; i++) {


@@ 84,31 69,6 @@ void matrix_init_custom(void) {
#endif
}

#ifdef ENCODER_ENABLE
bool encoder_update(uint8_t index, uint8_t state) {
    bool    changed = false;
    uint8_t i       = index;

    encoder_pulses[i] += encoder_LUT[state & 0xF];

    if (encoder_pulses[i] >= PLANCK_ENCODER_RESOLUTION) {
        encoder_value[index]++;
        changed = true;
        encoder_update_kb(index, false);
    }
    if (encoder_pulses[i] <= -PLANCK_ENCODER_RESOLUTION) {
        encoder_value[index]--;
        changed = true;
        encoder_update_kb(index, true);
    }
    encoder_pulses[i] %= PLANCK_ENCODER_RESOLUTION;
#ifdef ENCODER_DEFAULT_POS
    encoder_pulses[i] = 0;
#endif
    return changed;
}
#endif

bool matrix_scan_custom(matrix_row_t current_matrix[]) {
#ifndef PLANCK_WATCHDOG_DISABLE
    // reset watchdog


@@ 149,40 109,16 @@ bool matrix_scan_custom(matrix_row_t current_matrix[]) {
        changed |= old != current_matrix[row];
    }

#ifdef ENCODER_ENABLE
    // encoder-matrix functionality

    // set up C/rows for encoder read
    for (int i = 0; i < MATRIX_ROWS; i++) {
        setPinOutput(matrix_row_pins[i]);
        writePinHigh(matrix_row_pins[i]);
    }

    // set up A & B for reading
    setPinInputHigh(B12);
    setPinInputHigh(B13);

    for (int i = 0; i < MATRIX_ROWS; i++) {
        writePinLow(matrix_row_pins[i]);
        wait_us(10);
        uint8_t new_status = (palReadPad(GPIOB, 12) << 0) | (palReadPad(GPIOB, 13) << 1);
        if ((encoder_state[i] & 0x3) != new_status) {
            encoder_state[i] <<= 2;
            encoder_state[i] |= new_status;
            encoder_update(i, encoder_state[i]);
        }
        writePinHigh(matrix_row_pins[i]);
    }

    // revert A & B to matrix state
    setPinInputLow(B12);
    setPinInputLow(B13);

    // revert C/rows to matrix state
    for (int i = 0; i < MATRIX_ROWS; i++) {
        setPinInputLow(matrix_row_pins[i]);
    }
#endif

    return changed;
}

uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
    pin_t pin = pad_b ? B13: B12;
    setPinInputHigh(pin);
    writePinLow(matrix_row_pins[index]);
    wait_us(10);
    uint8_t ret = readPin(pin) ? 1 : 0;
    setPinInputLow(matrix_row_pins[index]);
    setPinInputLow(pin);
    return ret;
}

M keyboards/ploopyco/mouse/config.h => keyboards/ploopyco/mouse/config.h +3 -0
@@ 32,3 32,6 @@

/* PMW33XX Settings */
#define PMW33XX_CS_PIN B0

/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

M keyboards/ploopyco/mouse/info.json => keyboards/ploopyco/mouse/info.json +6 -0
@@ 31,6 31,12 @@
            ["D4", "D2", "E6", "B6", "D7", "C6", "C7", "B7"]
        ]
    },
    "features": {
        "encoder": true
    },
    "encoder": {
        "driver": "custom"
    },
    "layouts": {
        "LAYOUT": {
            "layout": [

M keyboards/ploopyco/mouse/mouse.c => keyboards/ploopyco/mouse/mouse.c +9 -11
@@ 66,8 66,6 @@ uint8_t  OptLowPin         = OPT_ENC1;
bool     debug_encoder     = false;
bool     is_drag_scroll    = false;

__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!encoder_update_user(index, clockwise)) {
        return false;


@@ 83,7 81,14 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
    return true;
}

void process_wheel(void) {
void encoder_driver_init(void) {
    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    opt_encoder_init();
}

void encoder_driver_task(void) {
    // Lovingly ripped from the Ploopy Source

    // If the mouse wheel was just released, do not scroll.


@@ 111,12 116,10 @@ void process_wheel(void) {
    int dir = opt_encoder_handler(p1, p2);

    if (dir == 0) return;
    encoder_update_kb(0, dir > 0);
    encoder_queue_event(0, dir == 1);
}

report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
    process_wheel();

    if (is_drag_scroll) {
        mouse_report.h = mouse_report.x;
#ifdef PLOOPY_DRAGSCROLL_INVERT


@@ 177,9 180,6 @@ void keyboard_pre_init_kb(void) {
    // debug_mouse   = true;
    // debug_encoder = true;

    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    /* Ground all output pins connected to ground. This provides additional
     * pathways to ground. If you're messing with this, know this: driving ANY
     * of these pins high will cause a short. On the MCU. Ka-blooey.


@@ 204,8 204,6 @@ void keyboard_pre_init_kb(void) {

void pointing_device_init_kb(void) {
    pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
    // initialize the scroll wheel's optical encoder
    opt_encoder_init();
}

void eeconfig_init_kb(void) {

M keyboards/ploopyco/mouse/rules.mk => keyboards/ploopyco/mouse/rules.mk +0 -3
@@ 16,9 16,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = pmw3360
MOUSEKEY_ENABLE = yes       # Mouse keys

ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE

ANALOG_DRIVER_REQUIRED = yes

SRC += opt_encoder.c

M keyboards/ploopyco/trackball/config.h => keyboards/ploopyco/trackball/config.h +3 -0
@@ 31,3 31,6 @@
/* PMW33XX Settings */
#define PMW33XX_CS_PIN             B0
#define POINTING_DEVICE_INVERT_Y

/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

M keyboards/ploopyco/trackball/info.json => keyboards/ploopyco/trackball/info.json +6 -0
@@ 12,6 12,12 @@
    "bootmagic": {
        "matrix": [0, 3]
    },
    "features": {
        "encoder": true
    },
    "encoder": {
        "driver": "custom"
    },
    "layouts": {
        "LAYOUT": {
            "layout": [

M keyboards/ploopyco/trackball/rules.mk => keyboards/ploopyco/trackball/rules.mk +0 -3
@@ 16,9 16,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = pmw3360
MOUSEKEY_ENABLE = yes       # Mouse keys

ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE

ANALOG_DRIVER_REQUIRED = yes

SRC += opt_encoder.c

M keyboards/ploopyco/trackball/trackball.c => keyboards/ploopyco/trackball/trackball.c +10 -10
@@ 66,8 66,6 @@ uint8_t  OptLowPin         = OPT_ENC1;
bool     debug_encoder     = false;
bool     is_drag_scroll    = false;

__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!encoder_update_user(index, clockwise)) {
        return false;


@@ 83,7 81,15 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
    return true;
}

void process_wheel(void) {

void encoder_driver_init(void) {
    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    opt_encoder_init();
}

void encoder_driver_task(void) {
    // TODO: Replace this with interrupt driven code,  polling is S L O W
    // Lovingly ripped from the Ploopy Source



@@ 112,11 118,10 @@ void process_wheel(void) {
    int dir = opt_encoder_handler(p1, p2);

    if (dir == 0) return;
    encoder_update_kb(0, dir > 0);
    encoder_queue_event(0, dir == 1);
}

report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
    process_wheel();

    if (is_drag_scroll) {
#ifdef PLOOPY_DRAGSCROLL_H_INVERT


@@ 189,9 194,6 @@ void keyboard_pre_init_kb(void) {
    // debug_mouse   = true;
    // debug_encoder = true;

    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    /* Ground all output pins connected to ground. This provides additional
     * pathways to ground. If you're messing with this, know this: driving ANY
     * of these pins high will cause a short. On the MCU. Ka-blooey.


@@ 216,8 218,6 @@ void keyboard_pre_init_kb(void) {

void pointing_device_init_kb(void) {
    pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
    // initialize the scroll wheel's optical encoder
    opt_encoder_init();
}

void eeconfig_init_kb(void) {

M keyboards/ploopyco/trackball_mini/config.h => keyboards/ploopyco/trackball_mini/config.h +3 -0
@@ 32,3 32,6 @@
#define ADNS5050_CS_PIN           B4

#define POINTING_DEVICE_ROTATION_270

/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

M keyboards/ploopyco/trackball_mini/info.json => keyboards/ploopyco/trackball_mini/info.json +6 -0
@@ 14,6 14,12 @@
    },
    "processor": "atmega32u4",
    "bootloader": "atmel-dfu",
    "features": {
        "encoder": true
    },
    "encoder": {
        "driver": "custom"
    },
    "layouts": {
        "LAYOUT": {
            "layout": [

M keyboards/ploopyco/trackball_mini/rules.mk => keyboards/ploopyco/trackball_mini/rules.mk +0 -3
@@ 13,9 13,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = adns5050
MOUSEKEY_ENABLE = yes        # Mouse keys

ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE

ANALOG_DRIVER_REQUIRED = yes

SRC += opt_encoder.c

M keyboards/ploopyco/trackball_mini/trackball_mini.c => keyboards/ploopyco/trackball_mini/trackball_mini.c +9 -11
@@ 74,8 74,6 @@ uint8_t  OptLowPin         = OPT_ENC1;
bool     debug_encoder     = false;
bool     is_drag_scroll    = false;

__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!encoder_update_user(index, clockwise)) {
        return false;


@@ 91,7 89,14 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
    return true;
}

void process_wheel(void) {
void encoder_driver_init(void) {
    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    opt_encoder_init();
}

void encoder_driver_task(void) {
    uint16_t p1 = adc_read(OPT_ENC1_MUX);
    uint16_t p2 = adc_read(OPT_ENC2_MUX);



@@ 113,21 118,17 @@ void process_wheel(void) {
    }

    if (dir == 0) return;
    encoder_update_kb(0, dir > 0);
    encoder_queue_event(0, dir == 1);

    lastScroll = timer_read();
}

void pointing_device_init_kb(void) {
    opt_encoder_init();

    // set the DPI.
    pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
}

report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
    process_wheel();

    if (is_drag_scroll) {
        mouse_report.h = mouse_report.x;
#ifdef PLOOPY_DRAGSCROLL_INVERT


@@ 180,9 181,6 @@ void keyboard_pre_init_kb(void) {
    // debug_mouse = true;
    // debug_encoder = true;

    setPinInput(OPT_ENC1);
    setPinInput(OPT_ENC2);

    /* Ground all output pins connected to ground. This provides additional
     * pathways to ground. If you're messing with this, know this: driving ANY
     * of these pins high will cause a short. On the MCU. Ka-blooey.

M keyboards/ploopyco/trackball_thumb/config.h => keyboards/ploopyco/trackball_thumb/config.h +3 -0
@@ 31,3 31,6 @@

/* PMW3360 Settings */
#define POINTING_DEVICE_CS_PIN B0

/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

M keyboards/ploopyco/trackball_thumb/info.json => keyboards/ploopyco/trackball_thumb/info.json +4 -1
@@ 18,7 18,10 @@
        "mousekey": true,
        "nkro": true,
        "pointing_device": true,
        "encoder": false
        "encoder": true
    },
    "encoder": {
        "driver": "custom"
    },
    "layouts": {
        "LAYOUT": {

D keyboards/ploopyco/trackball_thumb/post_rules.mk => keyboards/ploopyco/trackball_thumb/post_rules.mk +0 -4
@@ 1,4 0,0 @@
# Force encoder to be disabled
# But enable the defines for it
ENCODER_ENABLE := no
OPT_DEFS += -DENCODER_ENABLE

M keyboards/ploopyco/trackball_thumb/trackball_thumb.c => keyboards/ploopyco/trackball_thumb/trackball_thumb.c +8 -12
@@ 17,6 17,7 @@
 */

#include "trackball_thumb.h"
#include "encoder.h"

#ifndef OPT_DEBOUNCE
#    define OPT_DEBOUNCE 5  // (ms) 			Time between scroll events


@@ 57,9 58,6 @@ uint16_t last_mid_click    = 0;  // Stops scrollwheel from being read if it was 
bool     debug_encoder     = false;
bool     is_drag_scroll    = false;

// require, since core encoder.c (where is is normally defined isn't present
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!encoder_update_user(index, clockwise)) {
        return false;


@@ 75,25 73,25 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
    return true;
}

void encoder_init(void) { opt_encoder_init(); }
void encoder_driver_init(void) { opt_encoder_init(); }

bool encoder_read(void) {
void encoder_driver_task(void) {
    // Lovingly ripped from the Ploopy Source

    // If the mouse wheel was just released, do not scroll.
    if (timer_elapsed(last_mid_click) < SCROLL_BUTT_DEBOUNCE) {
        return false;
        return;
    }

    // Limit the number of scrolls per unit time.
    if (timer_elapsed(last_scroll) < OPT_DEBOUNCE) {
        return false;
        return;
    }

    // Don't scroll if the middle button is depressed.
    if (is_scroll_clicked) {
#ifndef IGNORE_SCROLL_CLICK
        return false;
        return;
#endif
    }



@@ 104,10 102,8 @@ bool encoder_read(void) {

    int dir = opt_encoder_handler(p1, p2);

    if (dir == 0) return false;
    ;
    encoder_update_kb(0, dir == 1);
    return true;
    if (dir == 0) return;
    encoder_queue_event(0, dir == 1);
}

report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {

M keyboards/ploopyco/trackball_thumb/trackball_thumb.h => keyboards/ploopyco/trackball_thumb/trackball_thumb.h +0 -3
@@ 28,9 28,6 @@
#define OPT_ENC1_MUX 4
#define OPT_ENC2_MUX 0

bool encoder_update_kb(uint8_t index, bool clockwise);
bool encoder_update_user(uint8_t index, bool clockwise);

typedef union {
    uint32_t raw;
    struct {

M quantum/encoder.c => quantum/encoder.c +88 -248
@@ 1,81 1,110 @@
/*
 * Copyright 2018 Jack Humbert <jack.humb@gmail.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later

#include "encoder.h"
#include "keyboard.h"
#include <string.h>
#include "action.h"
#include "keycodes.h"
#include "encoder.h"
#include "wait.h"

#ifdef SPLIT_KEYBOARD
#    include "split_util.h"
#endif

// for memcpy
#include <string.h>

#ifndef ENCODER_MAP_KEY_DELAY
#    include "action.h"
#    define ENCODER_MAP_KEY_DELAY TAP_CODE_DELAY
#endif

#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
#    define ENCODER_RESOLUTION 4
#endif
__attribute__((weak)) bool should_process_encoder(void) {
    return is_keyboard_master();
}

#if !defined(ENCODERS_PAD_A) || !defined(ENCODERS_PAD_B)
#    error "No encoder pads defined by ENCODERS_PAD_A and ENCODERS_PAD_B"
#endif
static encoder_events_t encoder_events;

void encoder_init(void) {
    memset(&encoder_events, 0, sizeof(encoder_events));
    encoder_driver_init();
}

extern volatile bool isLeftHand;
static bool encoder_handle_queue(void) {
    bool changed = false;
    while (encoder_events.tail != encoder_events.head) {
        encoder_event_t event = encoder_events.queue[encoder_events.tail];
        encoder_events.tail   = (encoder_events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;

static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A;
static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B;
#ifdef ENCODER_MAP_ENABLE

#ifdef ENCODER_RESOLUTIONS
static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS;
#endif
        // The delays below cater for Windows and its wonderful requirements.
        action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, true) : MAKE_ENCODER_CCW_EVENT(event.index, true));
#    if ENCODER_MAP_KEY_DELAY > 0
        wait_ms(ENCODER_MAP_KEY_DELAY);
#    endif // ENCODER_MAP_KEY_DELAY > 0

#ifndef ENCODER_DIRECTION_FLIP
#    define ENCODER_CLOCKWISE true
#    define ENCODER_COUNTER_CLOCKWISE false
#else
#    define ENCODER_CLOCKWISE false
#    define ENCODER_COUNTER_CLOCKWISE true
#endif
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
        action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, false) : MAKE_ENCODER_CCW_EVENT(event.index, false));
#    if ENCODER_MAP_KEY_DELAY > 0
        wait_ms(ENCODER_MAP_KEY_DELAY);
#    endif // ENCODER_MAP_KEY_DELAY > 0

#else // ENCODER_MAP_ENABLE

        encoder_update_kb(event.index, event.clockwise ? true : false);

#endif // ENCODER_MAP_ENABLE

        changed = true;
    }
    return changed;
}

static uint8_t encoder_state[NUM_ENCODERS]  = {0};
static int8_t  encoder_pulses[NUM_ENCODERS] = {0};
bool encoder_task(void) {
    bool changed = false;

// encoder counts
static uint8_t thisCount;
#ifdef SPLIT_KEYBOARD
// encoder offsets for each hand
static uint8_t thisHand, thatHand;
// encoder counts for each hand
static uint8_t thatCount;
#endif
    // Attempt to process existing encoder events in case split handling has already enqueued events
    if (should_process_encoder()) {
        changed |= encoder_handle_queue();
    }
#endif // SPLIT_KEYBOARD

    // Let the encoder driver produce events
    encoder_driver_task();

    // Process any events that were enqueued
    if (should_process_encoder()) {
        changed |= encoder_handle_queue();
    }

    return changed;
}

bool encoder_queue_event(uint8_t index, bool clockwise) {
    // Drop out if we're full
    if ((encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS == encoder_events.tail) {
        return false;
    }

    // Append the event
    encoder_event_t new_event                 = {.index = index, .clockwise = clockwise ? 1 : 0};
    encoder_events.queue[encoder_events.head] = new_event;

    // Increment the head index
    encoder_events.head = (encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS;

    return true;
}

void encoder_retrieve_events(encoder_events_t *events) {
    memcpy(events, &encoder_events, sizeof(encoder_events));
}

static uint8_t encoder_value[NUM_ENCODERS] = {0};
#ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index) {
    encoder_events.tail = tail_index;
}

__attribute__((weak)) void encoder_wait_pullup_charge(void) {
    wait_us(100);
void encoder_handle_slave_events(encoder_events_t *events) {
    while (events->tail != events->head) {
        encoder_event_t event = events->queue[events->tail];
        events->tail          = (events->tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        encoder_queue_event(event.index, event.clockwise ? true : false);
    }
}
#endif // SPLIT_KEYBOARD

__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) {
    return true;


@@ 106,192 135,3 @@ __attribute__((weak)) bool encoder_update_kb(uint8_t index, bool clockwise) {
#endif // ENCODER_TESTS
    return res;
}

__attribute__((weak)) bool should_process_encoder(void) {
    return is_keyboard_master();
}

void encoder_init(void) {
#ifdef SPLIT_KEYBOARD
    thisHand  = isLeftHand ? 0 : NUM_ENCODERS_LEFT;
    thatHand  = NUM_ENCODERS_LEFT - thisHand;
    thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT;
    thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT;
#else // SPLIT_KEYBOARD
    thisCount                = NUM_ENCODERS;
#endif

#ifdef ENCODER_TESTS
    // Annoying that we have to clear out values during initialisation here, but
    // because all the arrays are static locals, rerunning tests in the same
    // executable doesn't reset any of these. Kinda crappy having test-only code
    // here, but it's the simplest solution.
    memset(encoder_value, 0, sizeof(encoder_value));
    memset(encoder_state, 0, sizeof(encoder_state));
    memset(encoder_pulses, 0, sizeof(encoder_pulses));
    static const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A;
    static const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B;
    for (uint8_t i = 0; i < thisCount; i++) {
        encoders_pad_a[i] = encoders_pad_a_left[i];
        encoders_pad_b[i] = encoders_pad_b_left[i];
    }
#endif

#if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
    // Re-initialise the pads if it's the right-hand side
    if (!isLeftHand) {
        static const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT;
        static const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT;
        for (uint8_t i = 0; i < thisCount; i++) {
            encoders_pad_a[i] = encoders_pad_a_right[i];
            encoders_pad_b[i] = encoders_pad_b_right[i];
        }
    }
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)

    // Encoder resolutions is handled purely master-side, so concatenate the two arrays
#if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
#    if defined(ENCODER_RESOLUTIONS_RIGHT)
    static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT;
#    else  // defined(ENCODER_RESOLUTIONS_RIGHT)
    static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS;
#    endif // defined(ENCODER_RESOLUTIONS_RIGHT)
    for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) {
        encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i];
    }
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)

    for (uint8_t i = 0; i < thisCount; i++) {
        gpio_set_pin_input_high(encoders_pad_a[i]);
        gpio_set_pin_input_high(encoders_pad_b[i]);
    }
    encoder_wait_pullup_charge();
    for (uint8_t i = 0; i < thisCount; i++) {
        encoder_state[i] = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
    }
}

#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
    // The delays below cater for Windows and its wonderful requirements.
    action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, true) : MAKE_ENCODER_CCW_EVENT(index, true));
#    if ENCODER_MAP_KEY_DELAY > 0
    wait_ms(ENCODER_MAP_KEY_DELAY);
#    endif // ENCODER_MAP_KEY_DELAY > 0

    action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, false) : MAKE_ENCODER_CCW_EVENT(index, false));
#    if ENCODER_MAP_KEY_DELAY > 0
    wait_ms(ENCODER_MAP_KEY_DELAY);
#    endif // ENCODER_MAP_KEY_DELAY > 0
}
#endif // ENCODER_MAP_ENABLE

static bool encoder_update(uint8_t index, uint8_t state) {
    bool    changed = false;
    uint8_t i       = index;

#ifdef ENCODER_RESOLUTIONS
    const uint8_t resolution = encoder_resolutions[i];
#else
    const uint8_t resolution = ENCODER_RESOLUTION;
#endif

#ifdef SPLIT_KEYBOARD
    index += thisHand;
#endif
    encoder_pulses[i] += encoder_LUT[state & 0xF];

#ifdef ENCODER_DEFAULT_POS
    if ((encoder_pulses[i] >= resolution) || (encoder_pulses[i] <= -resolution) || ((state & 0x3) == ENCODER_DEFAULT_POS)) {
        if (encoder_pulses[i] >= 1) {
#else
    if (encoder_pulses[i] >= resolution) {
#endif

            encoder_value[index]++;
            changed = true;
#ifdef SPLIT_KEYBOARD
            if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
                encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#else  // ENCODER_MAP_ENABLE
        encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
        }

#ifdef ENCODER_DEFAULT_POS
        if (encoder_pulses[i] <= -1) {
#else
    if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
#endif
            encoder_value[index]--;
            changed = true;
#ifdef SPLIT_KEYBOARD
            if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
                encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#else  // ENCODER_MAP_ENABLE
        encoder_update_kb(index, ENCODER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
        }
        encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS
        encoder_pulses[i] = 0;
    }
#endif
    return changed;
}

bool encoder_read(void) {
    bool changed = false;
    for (uint8_t i = 0; i < thisCount; i++) {
        uint8_t new_status = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
        if ((encoder_state[i] & 0x3) != new_status) {
            encoder_state[i] <<= 2;
            encoder_state[i] |= new_status;
            changed |= encoder_update(i, encoder_state[i]);
        }
    }
    return changed;
}

#ifdef SPLIT_KEYBOARD
void last_encoder_activity_trigger(void);

void encoder_state_raw(uint8_t *slave_state) {
    memcpy(slave_state, &encoder_value[thisHand], sizeof(uint8_t) * thisCount);
}

void encoder_update_raw(uint8_t *slave_state) {
    bool changed = false;
    for (uint8_t i = 0; i < thatCount; i++) { // Note inverted logic -- we want the opposite side
        const uint8_t index = i + thatHand;
        int8_t        delta = slave_state[i] - encoder_value[index];
        while (delta > 0) {
            delta--;
            encoder_value[index]++;
            changed = true;
#    ifdef ENCODER_MAP_ENABLE
            encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#    else  // ENCODER_MAP_ENABLE
            encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#    endif // ENCODER_MAP_ENABLE
        }
        while (delta < 0) {
            delta++;
            encoder_value[index]--;
            changed = true;
#    ifdef ENCODER_MAP_ENABLE
            encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#    else  // ENCODER_MAP_ENABLE
            encoder_update_kb(index, ENCODER_CLOCKWISE);
#    endif // ENCODER_MAP_ENABLE
        }
    }

    // Update the last encoder input time -- handled external to encoder_read() when we're running a split
    if (changed) last_encoder_activity_trigger();
}
#endif

M quantum/encoder.h => quantum/encoder.h +71 -28
@@ 22,45 22,88 @@
#include "gpio.h"
#include "util.h"

#ifdef ENCODER_ENABLE

__attribute__((weak)) bool should_process_encoder(void);

void encoder_init(void);
bool encoder_read(void);
bool encoder_task(void);
bool encoder_queue_event(uint8_t index, bool clockwise);

bool encoder_update_kb(uint8_t index, bool clockwise);
bool encoder_update_user(uint8_t index, bool clockwise);

#ifdef SPLIT_KEYBOARD
#    ifdef SPLIT_KEYBOARD

#        if defined(ENCODERS_PAD_A_RIGHT)
#            ifndef NUM_ENCODERS_LEFT
#                define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#            endif
#            ifndef NUM_ENCODERS_RIGHT
#                define NUM_ENCODERS_RIGHT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A_RIGHT))
#            endif
#        else
#            ifndef NUM_ENCODERS_LEFT
#                define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#            endif
#            ifndef NUM_ENCODERS_RIGHT
#                define NUM_ENCODERS_RIGHT NUM_ENCODERS_LEFT
#            endif
#        endif
#        ifndef NUM_ENCODERS
#            define NUM_ENCODERS (NUM_ENCODERS_LEFT + NUM_ENCODERS_RIGHT)
#        endif

#    else // SPLIT_KEYBOARD

void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);
#        ifndef NUM_ENCODERS
#            define NUM_ENCODERS ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#        endif
#        define NUM_ENCODERS_LEFT NUM_ENCODERS
#        define NUM_ENCODERS_RIGHT 0

#    if defined(ENCODERS_PAD_A_RIGHT)
#        define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#        define NUM_ENCODERS_RIGHT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A_RIGHT))
#    else
#        define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#        define NUM_ENCODERS_RIGHT NUM_ENCODERS_LEFT
#    endif
#    define NUM_ENCODERS (NUM_ENCODERS_LEFT + NUM_ENCODERS_RIGHT)
#    endif // SPLIT_KEYBOARD

#else // SPLIT_KEYBOARD
#    ifndef NUM_ENCODERS
#        define NUM_ENCODERS 0
#        define NUM_ENCODERS_LEFT 0
#        define NUM_ENCODERS_RIGHT 0
#    endif // NUM_ENCODERS

#    define NUM_ENCODERS ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
#    define NUM_ENCODERS_LEFT NUM_ENCODERS
#    define NUM_ENCODERS_RIGHT 0
#    define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)

#endif // SPLIT_KEYBOARD
#    ifndef MAX_QUEUED_ENCODER_EVENTS
#        define MAX_QUEUED_ENCODER_EVENTS MAX(4, ((NUM_ENCODERS_MAX_PER_SIDE) + 1))
#    endif // MAX_QUEUED_ENCODER_EVENTS

#ifndef NUM_ENCODERS
#    define NUM_ENCODERS 0
#    define NUM_ENCODERS_LEFT 0
#    define NUM_ENCODERS_RIGHT 0
#endif // NUM_ENCODERS
typedef struct encoder_event_t {
    uint8_t index : 7;
    uint8_t clockwise : 1;
} encoder_event_t;

#define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)
typedef struct encoder_events_t {
    uint8_t         head;
    uint8_t         tail;
    encoder_event_t queue[MAX_QUEUED_ENCODER_EVENTS];
} encoder_events_t;

#ifdef ENCODER_MAP_ENABLE
#    define NUM_DIRECTIONS 2
#    define ENCODER_CCW_CW(ccw, cw) \
        { (cw), (ccw) }
// Get the current queued events
void encoder_retrieve_events(encoder_events_t *events);

#    ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index);
void encoder_handle_slave_events(encoder_events_t *events);
#    endif // SPLIT_KEYBOARD

#    ifdef ENCODER_MAP_ENABLE
#        define NUM_DIRECTIONS 2
#        define ENCODER_CCW_CW(ccw, cw) \
            { (cw), (ccw) }
extern const uint16_t encoder_map[][NUM_ENCODERS][NUM_DIRECTIONS];
#endif // ENCODER_MAP_ENABLE
#    endif // ENCODER_MAP_ENABLE

// "Custom encoder lite" support
void encoder_driver_init(void);
void encoder_driver_task(void);

#endif // ENCODER_ENABLE

A quantum/encoder/tests/config_encoder_common.h => quantum/encoder/tests/config_encoder_common.h +6 -0
@@ 0,0 1,6 @@
// Copyright 2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once

// Override the one in quantum/util because it doesn't like working on x64 builds.
#define ARRAY_SIZE(array) (sizeof((array)) / sizeof((array)[0]))

M quantum/encoder/tests/config_mock.h => quantum/encoder/tests/config_mock.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_left_eq_right.h => quantum/encoder/tests/config_mock_split_left_eq_right.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_left_gt_right.h => quantum/encoder/tests/config_mock_split_left_gt_right.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_left_lt_right.h => quantum/encoder/tests/config_mock_split_left_lt_right.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_no_left.h => quantum/encoder/tests/config_mock_split_no_left.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_no_right.h => quantum/encoder/tests/config_mock_split_no_right.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/config_mock_split_role.h => quantum/encoder/tests/config_mock_split_role.h +2 -1
@@ 1,6 1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"

#define MATRIX_ROWS 1
#define MATRIX_COLS 1

M quantum/encoder/tests/encoder_tests.cpp => quantum/encoder/tests/encoder_tests.cpp +1 -1
@@ 41,7 41,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderTest : public ::testing::Test {};

M quantum/encoder/tests/encoder_tests_split_left_eq_right.cpp => quantum/encoder/tests/encoder_tests_split_left_eq_right.cpp +74 -17
@@ 33,22 33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update  updates[32];

bool isMaster;
bool isLeftHand;

extern "C" {
bool is_keyboard_master(void) {
    return isMaster;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!isLeftHand) {
    if (!is_keyboard_master()) {
        // this method has no effect on slave half
        printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
        printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
        return true;
    }
    updates[updates_array_idx % 32] = {index, clockwise};
    updates_array_idx++;
    return true;
}
};

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestLeftEqRight : public ::testing::Test {


@@ 63,6 70,7 @@ class EncoderSplitTestLeftEqRight : public ::testing::Test {
};

TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
    isMaster   = true;
    isLeftHand = true;
    encoder_init();
    EXPECT_EQ(pinIsInputHigh[0], true);


@@ 77,6 85,7 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
}

TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
    isMaster   = true;
    isLeftHand = false;
    encoder_init();
    EXPECT_EQ(pinIsInputHigh[0], false);


@@ 90,7 99,8 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftMaster) {
    isMaster   = true;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 102,9 112,19 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 0);
    EXPECT_EQ(updates[0].clockwise, true);

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightMaster) {
    isMaster   = true;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 113,23 133,60 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
    setAndRead(6, true);
    setAndRead(7, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 3);
    EXPECT_EQ(updates[0].clockwise, true);

    EXPECT_EQ(slave_state[0], 0);
    EXPECT_EQ(slave_state[1], 0xFF);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftEqRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftSlave) {
    isMaster   = false;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(0, false);
    setAndRead(1, false);
    setAndRead(0, true);
    setAndRead(1, true);

    uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder CW
    encoder_update_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 0); // no updates received

    EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
    EXPECT_EQ(updates[0].index, 2);
    EXPECT_EQ(updates[0].clockwise, false);
    EXPECT_EQ(updates[1].index, 3);
    EXPECT_EQ(updates[1].clockwise, true);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSlave) {
    isMaster   = false;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(6, false);
    setAndRead(7, false);
    setAndRead(6, true);
    setAndRead(7, true);

    EXPECT_EQ(updates_array_idx, 0); // no updates received

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

M quantum/encoder/tests/encoder_tests_split_left_gt_right.cpp => quantum/encoder/tests/encoder_tests_split_left_gt_right.cpp +72 -17
@@ 33,22 33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update  updates[32];

bool isMaster;
bool isLeftHand;

extern "C" {
bool is_keyboard_master(void) {
    return isMaster;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!isLeftHand) {
    if (!is_keyboard_master()) {
        // this method has no effect on slave half
        printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
        printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
        return true;
    }
    updates[updates_array_idx % 32] = {index, clockwise};
    updates_array_idx++;
    return true;
}
};

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestLeftGreaterThanRight : public ::testing::Test {


@@ 94,7 101,8 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestInitRight) {
    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftMaster) {
    isMaster   = true;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 106,9 114,19 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 0);
    EXPECT_EQ(updates[0].clockwise, true);

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightMaster) {
    isMaster   = true;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 117,23 135,60 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
    setAndRead(6, true);
    setAndRead(7, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 3);
    EXPECT_EQ(updates[0].clockwise, true);

    EXPECT_EQ(slave_state[0], 0xFF);
    EXPECT_EQ(slave_state[1], 0);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftGreaterThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftSlave) {
    isMaster   = false;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(0, false);
    setAndRead(1, false);
    setAndRead(0, true);
    setAndRead(1, true);

    uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
    encoder_update_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 0); // no updates received

    EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
    EXPECT_EQ(updates[0].index, 3);
    EXPECT_EQ(updates[0].clockwise, false);
    EXPECT_EQ(updates[1].index, 4);
    EXPECT_EQ(updates[1].clockwise, true);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSlave) {
    isMaster   = false;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(6, false);
    setAndRead(7, false);
    setAndRead(6, true);
    setAndRead(7, true);

    EXPECT_EQ(updates_array_idx, 0); // no updates received

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

M quantum/encoder/tests/encoder_tests_split_left_lt_right.cpp => quantum/encoder/tests/encoder_tests_split_left_lt_right.cpp +72 -17
@@ 33,22 33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update  updates[32];

bool isMaster;
bool isLeftHand;

extern "C" {
bool is_keyboard_master(void) {
    return isMaster;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!isLeftHand) {
    if (!is_keyboard_master()) {
        // this method has no effect on slave half
        printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
        printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
        return true;
    }
    updates[updates_array_idx % 32] = {index, clockwise};
    updates_array_idx++;
    return true;
}
};

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestLeftLessThanRight : public ::testing::Test {


@@ 94,7 101,8 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestInitRight) {
    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftMaster) {
    isMaster   = true;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 106,9 114,19 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 0);
    EXPECT_EQ(updates[0].clockwise, true);

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightMaster) {
    isMaster   = true;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 117,23 135,60 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
    setAndRead(6, true);
    setAndRead(7, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 3);
    EXPECT_EQ(updates[0].clockwise, true);

    EXPECT_EQ(slave_state[0], 0);
    EXPECT_EQ(slave_state[1], 0xFF);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestLeftLessThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftSlave) {
    isMaster   = false;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(0, false);
    setAndRead(1, false);
    setAndRead(0, true);
    setAndRead(1, true);

    uint8_t slave_state[32] = {1, 0, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
    encoder_update_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 0); // no updates received

    EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
    EXPECT_EQ(updates[0].index, 2);
    EXPECT_EQ(updates[0].clockwise, false);
    EXPECT_EQ(updates[1].index, 4);
    EXPECT_EQ(updates[1].clockwise, true);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSlave) {
    isMaster   = false;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(6, false);
    setAndRead(7, false);
    setAndRead(6, true);
    setAndRead(7, true);

    EXPECT_EQ(updates_array_idx, 0); // no updates received

    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

M quantum/encoder/tests/encoder_tests_split_no_left.cpp => quantum/encoder/tests/encoder_tests_split_no_left.cpp +40 -29
@@ 33,22 33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update  updates[32];

bool isMaster;
bool isLeftHand;

extern "C" {
bool is_keyboard_master(void) {
    return isMaster;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!isLeftHand) {
    if (!is_keyboard_master()) {
        // this method has no effect on slave half
        printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
        printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
        return true;
    }
    updates[updates_array_idx % 32] = {index, clockwise};
    updates_array_idx++;
    return true;
}
};

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestNoLeft : public ::testing::Test {


@@ 82,19 89,8 @@ TEST_F(EncoderSplitTestNoLeft, TestInitRight) {
    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeft) {
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(0, false);
    setAndRead(1, false);
    setAndRead(0, true);
    setAndRead(1, true);

    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeftMaster) {
    isMaster   = true;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.


@@ 103,23 99,38 @@ TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
    setAndRead(2, true);
    setAndRead(3, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 1);
    EXPECT_EQ(updates[0].clockwise, true);

    EXPECT_EQ(slave_state[0], 0);
    EXPECT_EQ(slave_state[1], 0xFF);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestNoLeft, TestMultipleEncodersRightReceived) {
    isLeftHand = true;
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSlave) {
    isMaster   = false;
    isLeftHand = false;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(2, false);
    setAndRead(3, false);
    setAndRead(2, true);
    setAndRead(3, true);

    uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
    encoder_update_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 0); // no updates received

    EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
    EXPECT_EQ(updates[0].index, 0);
    EXPECT_EQ(updates[0].clockwise, false);
    EXPECT_EQ(updates[1].index, 1);
    EXPECT_EQ(updates[1].clockwise, true);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

M quantum/encoder/tests/encoder_tests_split_no_right.cpp => quantum/encoder/tests/encoder_tests_split_no_right.cpp +42 -24
@@ 33,22 33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update  updates[32];

bool isMaster;
bool isLeftHand;

extern "C" {
bool is_keyboard_master(void) {
    return isMaster;
}

bool encoder_update_kb(uint8_t index, bool clockwise) {
    if (!isLeftHand) {
    if (!is_keyboard_master()) {
        // this method has no effect on slave half
        printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
        printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
        return true;
    }
    updates[updates_array_idx % 32] = {index, clockwise};
    updates_array_idx++;
    return true;
}
};

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestNoRight : public ::testing::Test {


@@ 82,37 89,48 @@ TEST_F(EncoderSplitTestNoRight, TestInitRight) {
    EXPECT_EQ(updates_array_idx, 0); // no updates received
}

TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeftMaster) {
    isMaster   = true;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(0, false);
    setAndRead(1, false);
    setAndRead(0, true);
    setAndRead(1, true);
    setAndRead(2, false);
    setAndRead(3, false);
    setAndRead(2, true);
    setAndRead(3, true);

    EXPECT_EQ(updates_array_idx, 1); // one updates received
    EXPECT_EQ(updates[0].index, 0);
    EXPECT_EQ(updates_array_idx, 1); // one update received
    EXPECT_EQ(updates[0].index, 1);
    EXPECT_EQ(updates[0].clockwise, true);
}

TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSent) {
    isLeftHand = false;
    encoder_init();

    uint8_t slave_state[32] = {0xAA, 0xAA};
    encoder_state_raw(slave_state);

    EXPECT_EQ(slave_state[0], 0xAA);
    EXPECT_EQ(slave_state[1], 0xAA);
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 0); // No events should be queued on master
}

TEST_F(EncoderSplitTestNoRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSlave) {
    isMaster   = false;
    isLeftHand = true;
    encoder_init();
    // send 4 pulses. with resolution 4, that's one step and we should get 1 update.
    setAndRead(2, false);
    setAndRead(3, false);
    setAndRead(2, true);
    setAndRead(3, true);

    uint8_t slave_state[32] = {1, 0xFF}; // These values would trigger updates if there were encoders on the other side
    encoder_update_raw(slave_state);
    EXPECT_EQ(updates_array_idx, 0); // no updates received

    EXPECT_EQ(updates_array_idx, 0); // no updates received -- no right-hand encoders
    int              events_queued = 0;
    encoder_events_t events;
    encoder_retrieve_events(&events);
    while (events.tail != events.head) {
        events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
        ++events_queued;
    }
    EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

M quantum/encoder/tests/encoder_tests_split_role.cpp => quantum/encoder/tests/encoder_tests_split_role.cpp +1 -7
@@ 50,7 50,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {

bool setAndRead(pin_t pin, bool val) {
    setPin(pin, val);
    return encoder_read();
    return encoder_task();
}

class EncoderSplitTestRole : public ::testing::Test {


@@ 87,9 87,6 @@ TEST_F(EncoderSplitTestRole, TestPrimaryRight) {
    setAndRead(6, true);
    setAndRead(7, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);

    EXPECT_EQ(num_updates, 1); // one update received
}



@@ 116,8 113,5 @@ TEST_F(EncoderSplitTestRole, TestNotPrimaryRight) {
    setAndRead(6, true);
    setAndRead(7, true);

    uint8_t slave_state[32] = {0};
    encoder_state_raw(slave_state);

    EXPECT_EQ(num_updates, 0); // zero updates received
}

M quantum/encoder/tests/mock_split.c => quantum/encoder/tests/mock_split.c +0 -4
@@ 36,7 36,3 @@ bool setPin(pin_t pin, bool val) {
}

void last_encoder_activity_trigger(void) {}

__attribute__((weak)) bool is_keyboard_master(void) {
    return true;
}

M quantum/encoder/tests/mock_split.h => quantum/encoder/tests/mock_split.h +0 -3
@@ 22,9 22,6 @@
#define SPLIT_KEYBOARD
typedef uint8_t pin_t;

void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);

extern bool pins[];
extern bool pinIsInputHigh[];


M quantum/encoder/tests/rules.mk => quantum/encoder/tests/rules.mk +7 -0
@@ 3,6 3,7 @@ encoder_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock.h

encoder_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 13,6 14,7 @@ encoder_split_left_eq_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_

encoder_split_left_eq_right_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_eq_right.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 23,6 25,7 @@ encoder_split_left_gt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_

encoder_split_left_gt_right_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_gt_right.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 33,6 36,7 @@ encoder_split_left_lt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_

encoder_split_left_lt_right_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_lt_right.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 43,6 47,7 @@ encoder_split_no_left_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_

encoder_split_no_left_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_left.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 53,6 58,7 @@ encoder_split_no_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split

encoder_split_no_right_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_right.cpp \
	$(QUANTUM_PATH)/encoder.c


@@ 63,6 69,7 @@ encoder_split_role_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_rol

encoder_split_role_SRC := \
	platforms/test/timer.c \
	drivers/encoder/encoder_quadrature.c \
	$(QUANTUM_PATH)/encoder/tests/mock_split.c \
	$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_role.cpp \
	$(QUANTUM_PATH)/encoder.c

M quantum/keyboard.c => quantum/keyboard.c +1 -1
@@ 689,7 689,7 @@ void keyboard_task(void) {
#endif

#ifdef ENCODER_ENABLE
    if (encoder_read()) {
    if (encoder_task()) {
        last_encoder_activity_trigger();
        activity_has_occurred = true;
    }

M quantum/split_common/transaction_id_define.h => quantum/split_common/transaction_id_define.h +1 -0
@@ 31,6 31,7 @@ enum serial_transaction_id {
#ifdef ENCODER_ENABLE
    GET_ENCODERS_CHECKSUM,
    GET_ENCODERS_DATA,
    PUT_ENCODER_TAIL,
#endif // ENCODER_ENABLE

#ifndef DISABLE_SYNC_TIMER

M quantum/split_common/transactions.c => quantum/split_common/transactions.c +17 -9
@@ 234,21 234,28 @@ static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_ro
#ifdef ENCODER_ENABLE

static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    static uint32_t last_update = 0;
    uint8_t         temp_state[NUM_ENCODERS_MAX_PER_SIDE];
    static uint32_t  last_update = 0;
    encoder_events_t temp_events;

    bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
    if (okay) encoder_update_raw(temp_state);
    bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, &temp_events, &split_shmem->encoders.events, sizeof(temp_events));
    if (okay) {
        encoder_handle_slave_events(&split_shmem->encoders.events);
        transport_write(PUT_ENCODER_TAIL, &split_shmem->encoders.events.tail, sizeof(split_shmem->encoders.events.tail));
        split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
    }
    return okay;
}

static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
    uint8_t encoder_state[NUM_ENCODERS_MAX_PER_SIDE];
    encoder_state_raw(encoder_state);
    // Always prepare the encoder state for read.
    memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
    encoder_retrieve_events(&split_shmem->encoders.events);
    // Now update the checksum given that the encoders has been written to
    split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
    split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}

static void encoder_handlers_slave_reset(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
    uint8_t tail_index = *(uint8_t *)initiator2target_buffer;
    encoder_set_tail_index(tail_index);
}

// clang-format off


@@ 256,7 263,8 @@ static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t sl
#    define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(encoder)
#    define TRANSACTIONS_ENCODERS_REGISTRATIONS \
    [GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
    [GET_ENCODERS_DATA]     = trans_target2initiator_initializer(encoders.state),
    [GET_ENCODERS_DATA]     = trans_target2initiator_initializer(encoders.events), \
    [PUT_ENCODER_TAIL]      = trans_initiator2target_initializer_cb(encoders.events.tail, encoder_handlers_slave_reset),
// clang-format on

#else // ENCODER_ENABLE

M quantum/split_common/transport.h => quantum/split_common/transport.h +2 -2
@@ 65,8 65,8 @@ typedef struct _split_master_matrix_sync_t {

#ifdef ENCODER_ENABLE
typedef struct _split_slave_encoder_sync_t {
    uint8_t checksum;
    uint8_t state[NUM_ENCODERS_MAX_PER_SIDE];
    uint8_t          checksum;
    encoder_events_t events;
} split_slave_encoder_sync_t;
#endif // ENCODER_ENABLE


Do not follow this link