~ruther/qmk_firmware

9bea41c9b239916ae8786e7df02c29fad79ef459 — ai03 6 years ago ad12acd
[Keyboard] Add Orbit keyboard (#5306)

* Get things working except indicators

* Attempt to get things working

* hmm

* Compiles but doesn't run

* Make data transfer work

* Get all indicators working

* Remove old transport

* Prepare for pullreq

* Revert keymap from testing to production

* Final error checking for pull request

* Remove autogenerated is_command from config.h

* Rewrite pin toggles using qmk functions
A keyboards/ai03/orbit/config.h => keyboards/ai03/orbit/config.h +249 -0
@@ 0,0 1,249 @@
/*
Copyright 2018 Ryota Goto

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#pragma once

#include "config_common.h"

/* USB Device descriptor parameter */
#define VENDOR_ID       0xA103
#define PRODUCT_ID      0x0003
#define DEVICE_VER      0x0003
#define MANUFACTURER    ai03 Keyboard Designs
#define PRODUCT         Orbit
#define DESCRIPTION     Split ergonomic keyboard

/* key matrix size */
#define MATRIX_ROWS 10 // Double rows for split keyboards. Orbit has 5, so define 10
#define MATRIX_COLS 7

/*
 * Keyboard Matrix Assignments
 *
 * Change this to how you wired your keyboard
 * COLS: AVR pins used for columns, left to right
 * ROWS: AVR pins used for rows, top to bottom
 * DIODE_DIRECTION: COL2ROW = COL = Anode (+), ROW = Cathode (-, marked on diode)
 *                  ROW2COL = ROW = Anode (+), COL = Cathode (-, marked on diode)
 *
*/
#define MATRIX_ROW_PINS { F7, F6, F5, F4, D3 }
#define MATRIX_COL_PINS { C7, B4, D7, D6, D4, F1, F0 }
#define MATRIX_ROW_PINS_RIGHT { B6, B5, B4, D7, E6 }
#define MATRIX_COL_PINS_RIGHT { D4, D6, F1, F0, F4, F5, C6 }

#define SPLIT_HAND_PIN D5

//#define USE_I2C

#define SELECT_SOFT_SERIAL_SPEED 1

#define UNUSED_PINS

/* COL2ROW, ROW2COL, or CUSTOM_MATRIX */
#define DIODE_DIRECTION COL2ROW

/*
 * Split Keyboard specific options, make sure you have 'SPLIT_KEYBOARD = yes' in your rules.mk, and define SOFT_SERIAL_PIN.
 */
#define SOFT_SERIAL_PIN D0 // or D1, D2, D3, E6

#define BACKLIGHT_PIN B7
// #define BACKLIGHT_BREATHING
#define BACKLIGHT_LEVELS 3

// #define RGB_DI_PIN E2
// #ifdef RGB_DI_PIN
//   #define RGBLED_NUM 16
//   #define RGBLIGHT_HUE_STEP 8
//   #define RGBLIGHT_SAT_STEP 8
//   #define RGBLIGHT_VAL_STEP 8
//   #define RGBLIGHT_LIMIT_VAL 255 /* The maximum brightness level */
//   #define RGBLIGHT_SLEEP  /* If defined, the RGB lighting will be switched off when the host goes to sleep */
// /*== all animations enable ==*/
//   #define RGBLIGHT_ANIMATIONS
// /*== or choose animations ==*/
//   #define RGBLIGHT_EFFECT_BREATHING
//   #define RGBLIGHT_EFFECT_RAINBOW_MOOD
//   #define RGBLIGHT_EFFECT_RAINBOW_SWIRL
//   #define RGBLIGHT_EFFECT_SNAKE
//   #define RGBLIGHT_EFFECT_KNIGHT
//   #define RGBLIGHT_EFFECT_CHRISTMAS
//   #define RGBLIGHT_EFFECT_STATIC_GRADIENT
//   #define RGBLIGHT_EFFECT_RGB_TEST
//   #define RGBLIGHT_EFFECT_ALTERNATING
// #endif

/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
#define DEBOUNCING_DELAY 5

/* define if matrix has ghost (lacks anti-ghosting diodes) */
//#define MATRIX_HAS_GHOST

/* number of backlight levels */

/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE

/* If defined, GRAVE_ESC will always act as ESC when CTRL is held.
 * This is userful for the Windows task manager shortcut (ctrl+shift+esc).
 */
// #define GRAVE_ESC_CTRL_OVERRIDE

/*
 * Force NKRO
 *
 * Force NKRO (nKey Rollover) to be enabled by default, regardless of the saved
 * state in the bootmagic EEPROM settings. (Note that NKRO must be enabled in the
 * makefile for this to work.)
 *
 * If forced on, NKRO can be disabled via magic key (default = LShift+RShift+N)
 * until the next keyboard reset.
 *
 * NKRO may prevent your keystrokes from being detected in the BIOS, but it is
 * fully operational during normal computer usage.
 *
 * For a less heavy-handed approach, enable NKRO via magic key (LShift+RShift+N)
 * or via bootmagic (hold SPACE+N while plugging in the keyboard). Once set by
 * bootmagic, NKRO mode will always be enabled until it is toggled again during a
 * power-up.
 *
 */
//#define FORCE_NKRO

/*
 * Magic Key Options
 *
 * Magic keys are hotkey commands that allow control over firmware functions of
 * the keyboard. They are best used in combination with the HID Listen program,
 * found here: https://www.pjrc.com/teensy/hid_listen.html
 *
 * The options below allow the magic key functionality to be changed. This is
 * useful if your keyboard/keypad is missing keys and you want magic key support.
 *
 */

/* control how magic key switches layers */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS  true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS  true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false

/* override magic key keymap */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
//#define MAGIC_KEY_HELP1          H
//#define MAGIC_KEY_HELP2          SLASH
//#define MAGIC_KEY_DEBUG          D
//#define MAGIC_KEY_DEBUG_MATRIX   X
//#define MAGIC_KEY_DEBUG_KBD      K
//#define MAGIC_KEY_DEBUG_MOUSE    M
//#define MAGIC_KEY_VERSION        V
//#define MAGIC_KEY_STATUS         S
//#define MAGIC_KEY_CONSOLE        C
//#define MAGIC_KEY_LAYER0_ALT1    ESC
//#define MAGIC_KEY_LAYER0_ALT2    GRAVE
//#define MAGIC_KEY_LAYER0         0
//#define MAGIC_KEY_LAYER1         1
//#define MAGIC_KEY_LAYER2         2
//#define MAGIC_KEY_LAYER3         3
//#define MAGIC_KEY_LAYER4         4
//#define MAGIC_KEY_LAYER5         5
//#define MAGIC_KEY_LAYER6         6
//#define MAGIC_KEY_LAYER7         7
//#define MAGIC_KEY_LAYER8         8
//#define MAGIC_KEY_LAYER9         9
//#define MAGIC_KEY_BOOTLOADER     PAUSE
//#define MAGIC_KEY_LOCK           CAPS
//#define MAGIC_KEY_EEPROM         E
//#define MAGIC_KEY_NKRO           N
//#define MAGIC_KEY_SLEEP_LED      Z

/*
 * Feature disable options
 *  These options are also useful to firmware size reduction.
 */

/* disable debug print */
//#define NO_DEBUG

/* disable print */
//#define NO_PRINT

/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION

/*
 * MIDI options
 */

/* Prevent use of disabled MIDI features in the keymap */
//#define MIDI_ENABLE_STRICT 1

/* enable basic MIDI features:
   - MIDI notes can be sent when in Music mode is on
*/
//#define MIDI_BASIC

/* enable advanced MIDI features:
   - MIDI notes can be added to the keymap
   - Octave shift and transpose
   - Virtual sustain, portamento, and modulation wheel
   - etc.
*/
//#define MIDI_ADVANCED

/* override number of MIDI tone keycodes (each octave adds 12 keycodes and allocates 12 bytes) */
//#define MIDI_TONE_KEYCODE_OCTAVES 1

/*
 * HD44780 LCD Display Configuration
 */
/*
#define LCD_LINES           2     //< number of visible lines of the display
#define LCD_DISP_LENGTH    16     //< visibles characters per line of the display

#define LCD_IO_MODE      1            //< 0: memory mapped mode, 1: IO port mode

#if LCD_IO_MODE
#define LCD_PORT         PORTB        //< port for the LCD lines
#define LCD_DATA0_PORT   LCD_PORT     //< port for 4bit data bit 0
#define LCD_DATA1_PORT   LCD_PORT     //< port for 4bit data bit 1
#define LCD_DATA2_PORT   LCD_PORT     //< port for 4bit data bit 2
#define LCD_DATA3_PORT   LCD_PORT     //< port for 4bit data bit 3
#define LCD_DATA0_PIN    4            //< pin for 4bit data bit 0
#define LCD_DATA1_PIN    5            //< pin for 4bit data bit 1
#define LCD_DATA2_PIN    6            //< pin for 4bit data bit 2
#define LCD_DATA3_PIN    7            //< pin for 4bit data bit 3
#define LCD_RS_PORT      LCD_PORT     //< port for RS line
#define LCD_RS_PIN       3            //< pin  for RS line
#define LCD_RW_PORT      LCD_PORT     //< port for RW line
#define LCD_RW_PIN       2            //< pin  for RW line
#define LCD_E_PORT       LCD_PORT     //< port for Enable line
#define LCD_E_PIN        1            //< pin  for Enable line
#endif
*/

/* Bootmagic Lite key configuration */
// #define BOOTMAGIC_LITE_ROW 0
// #define BOOTMAGIC_LITE_COLUMN 0

A keyboards/ai03/orbit/info.json => keyboards/ai03/orbit/info.json +0 -0
A keyboards/ai03/orbit/keymaps/default/keymap.c => keyboards/ai03/orbit/keymaps/default/keymap.c +91 -0
@@ 0,0 1,91 @@
/* Copyright 2018 Ryota Goto
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include QMK_KEYBOARD_H

// Defines the keycodes used by our macros in process_record_user
enum custom_keycodes {
  MANUAL = SAFE_RANGE,
  DBLZERO
};

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
	[0] = LAYOUT( /* Base */
		TO(1),   KC_ESC,  KC_1,    KC_2,    KC_3,    KC_4,    KC_5,    KC_6,    KC_7,    KC_8,    KC_9,    KC_0,    KC_LBRC, KC_BSPC, \
		TO(1),   KC_TAB,  KC_Q,    KC_W,    KC_E,    KC_R,    KC_T,    KC_Y,    KC_U,    KC_I,    KC_O,    KC_P,    KC_RBRC, KC_BSLS, \
		KC_NO,   KC_CAPS, KC_A,    KC_S,    KC_D,    KC_F,    KC_G,    KC_H,    KC_J,    KC_K,    KC_L,    KC_SCLN, KC_QUOT, KC_ENT,  \
		KC_NO,   KC_LSFT, KC_Z,    KC_X,    KC_C,    KC_V,    KC_B,    KC_N,    KC_M,    KC_COMM, KC_DOT,  KC_SLSH, KC_PSCR, KC_DEL,  \
			     KC_LCTL, KC_LCTL, KC_LGUI, KC_LALT, MO(1),   KC_SPC,  KC_SPC,  MO(2),   KC_GRV,  KC_MENU, KC_MINS, KC_EQL 
	),
	[1] = LAYOUT( /* Fn, Arrowkeys, Media control, Backlight */
		TO(2),   _______, KC_F1,   KC_F2,   KC_F3,   KC_F4,   KC_F5,   KC_F6,   KC_F7,   KC_F8,   KC_F9,   KC_F10,  KC_VOLU, _______, \
		TO(2),   _______, _______, KC_PGUP, _______, _______, KC_F11,  KC_F12,  _______, KC_UP,   _______, _______, KC_VOLD, BL_STEP, \
		TO(0),   _______, KC_HOME, KC_PGDN, KC_END,  _______, _______, _______, KC_LEFT, KC_DOWN, KC_RGHT, _______, KC_MPLY, _______, \
		TO(0),   _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_INS,  \
			     _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
	),
	[2] = LAYOUT( /* Mousekeys and Numpad */
		KC_NO,   _______, _______, _______, _______, _______, _______, KC_NLCK, KC_P7,   KC_P8,   KC_P9,   KC_PSLS, _______, _______, \
		KC_NO,   _______, KC_BTN1, KC_MS_U, KC_BTN2, KC_WH_U, _______, _______, KC_P4,   KC_P5,   KC_P6,   KC_PAST, _______, _______, \
		TO(1),   _______, KC_MS_L, KC_MS_D, KC_MS_R, KC_WH_D, _______, _______, KC_P1,   KC_P2,   KC_P3,   KC_PMNS, _______, _______, \
		TO(1),   _______, KC_ACL0, KC_ACL1, KC_ACL2, KC_BTN3, _______, DBLZERO, KC_P0,   KC_PDOT, KC_PENT, KC_PPLS, _______, MANUAL,  \
			     _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
	)
};

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
	switch (keycode) {
		case MANUAL:
			if (record->event.pressed) 
			{
				// Keypress
				SEND_STRING("https://kb.ai03.me/redir/orbit");
			} 
			else 
			{
				// Key release
			}
			break;
		case DBLZERO:
			if (record->event.pressed) 
			{
				// Keypress
				SEND_STRING("00");
			} 
			else 
			{
				// Key release
			}
			break;
  }
  return true;
}

void matrix_init_user(void) {

}

void matrix_scan_user(void) {

}

void led_set_user(uint8_t usb_led) {

}

uint32_t layer_state_set_user(uint32_t state) {
		
	return state;
}

A keyboards/ai03/orbit/keymaps/default/readme.md => keyboards/ai03/orbit/keymaps/default/readme.md +3 -0
@@ 0,0 1,3 @@
# The default keymap for Orbit

[KLE of layout](http://www.keyboard-layout-editor.com/#/gists/53ebf59524de12515cb7e2e6de94f0d6)
\ No newline at end of file

A keyboards/ai03/orbit/matrix.c => keyboards/ai03/orbit/matrix.c +328 -0
@@ 0,0 1,328 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include "wait.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "config.h"
#include "split_flags.h"
#include "quantum.h"
#include "debounce.h"
#include "transport.h"

#if (MATRIX_COLS <= 8)
#  define print_matrix_header() print("\nr/c 01234567\n")
#  define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop(matrix[i])
#  define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
#  define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
#  define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop16(matrix[i])
#  define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
#  define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
#  define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
#  define matrix_bitpop(i) bitpop32(matrix[i])
#  define ROW_SHIFTER ((uint32_t)1)
#endif

#define ERROR_DISCONNECT_COUNT 5

//#define ROWS_PER_HAND (MATRIX_ROWS / 2)

#ifdef DIRECT_PINS
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
#else
static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t raw_matrix[ROWS_PER_HAND];

// row offsets for each hand
uint8_t thisHand, thatHand;

// user-defined overridable functions

__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }

__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }

__attribute__((weak)) void matrix_init_user(void) {}

__attribute__((weak)) void matrix_scan_user(void) {}

__attribute__((weak)) void matrix_slave_scan_user(void) {}

// helper functions

inline uint8_t matrix_rows(void) { return MATRIX_ROWS; }

inline uint8_t matrix_cols(void) { return MATRIX_COLS; }

bool matrix_is_modified(void) {
  if (debounce_active()) return false;
  return true;
}

inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); }

inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; }

void matrix_print(void) {
  print_matrix_header();

  for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
    phex(row);
    print(": ");
    print_matrix_row(row);
    print("\n");
  }
}

uint8_t matrix_key_count(void) {
  uint8_t count = 0;
  for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
    count += matrix_bitpop(i);
  }
  return count;
}

// matrix code

#ifdef DIRECT_PINS

static void init_pins(void) {
  for (int row = 0; row < MATRIX_ROWS; row++) {
    for (int col = 0; col < MATRIX_COLS; col++) {
      pin_t pin = direct_pins[row][col];
      if (pin != NO_PIN) {
        setPinInputHigh(pin);
      }
    }
  }
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  matrix_row_t last_row_value = current_matrix[current_row];
  current_matrix[current_row] = 0;

  for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
    pin_t pin = direct_pins[current_row][col_index];
    if (pin != NO_PIN) {
      current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
    }
  }

  return (last_row_value != current_matrix[current_row]);
}

#elif (DIODE_DIRECTION == COL2ROW)

static void select_row(uint8_t row) {
  setPinOutput(row_pins[row]);
  writePinLow(row_pins[row]);
}

static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); }

static void unselect_rows(void) {
  for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
    setPinInputHigh(row_pins[x]);
  }
}

static void init_pins(void) {
  unselect_rows();
  for (uint8_t x = 0; x < MATRIX_COLS; x++) {
    setPinInputHigh(col_pins[x]);
  }
}

static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
  // Store last value of row prior to reading
  matrix_row_t last_row_value = current_matrix[current_row];

  // Clear data in matrix row
  current_matrix[current_row] = 0;

  // Select row and wait for row selecton to stabilize
  select_row(current_row);
  wait_us(30);

  // For each col...
  for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
    // Populate the matrix row with the state of the col pin
    current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index);
  }

  // Unselect row
  unselect_row(current_row);

  return (last_row_value != current_matrix[current_row]);
}

#elif (DIODE_DIRECTION == ROW2COL)

static void select_col(uint8_t col) {
  setPinOutput(col_pins[col]);
  writePinLow(col_pins[col]);
}

static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); }

static void unselect_cols(void) {
  for (uint8_t x = 0; x < MATRIX_COLS; x++) {
    setPinInputHigh(col_pins[x]);
  }
}

static void init_pins(void) {
  unselect_cols();
  for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
    setPinInputHigh(row_pins[x]);
  }
}

static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
  bool matrix_changed = false;

  // Select col and wait for col selecton to stabilize
  select_col(current_col);
  wait_us(30);

  // For each row...
  for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
    // Store last value of row prior to reading
    matrix_row_t last_row_value = current_matrix[row_index];

    // Check row pin state
    if (readPin(row_pins[row_index])) {
      // Pin HI, clear col bit
      current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
    } else {
      // Pin LO, set col bit
      current_matrix[row_index] |= (ROW_SHIFTER << current_col);
    }

    // Determine if the matrix changed state
    if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) {
      matrix_changed = true;
    }
  }

  // Unselect col
  unselect_col(current_col);

  return matrix_changed;
}

#endif

void matrix_init(void) {
  debug_enable = true;
  debug_matrix = true;
  debug_mouse  = true;

  // Set pinout for right half if pinout for that half is defined
  if (!isLeftHand) {
#ifdef MATRIX_ROW_PINS_RIGHT
    const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
      row_pins[i] = row_pins_right[i];
    }
#endif
#ifdef MATRIX_COL_PINS_RIGHT
    const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
    for (uint8_t i = 0; i < MATRIX_COLS; i++) {
      col_pins[i] = col_pins_right[i];
    }
#endif
  }

  thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
  thatHand = ROWS_PER_HAND - thisHand;

  // initialize key pins
  init_pins();

  // initialize matrix state: all keys off
  for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
    matrix[i] = 0;
  }

  debounce_init(ROWS_PER_HAND);

  matrix_init_quantum();
}

uint8_t _matrix_scan(void) {
  bool changed = false;

#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
  // Set row, read cols
  for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
    changed |= read_cols_on_row(raw_matrix, current_row);
  }
#elif (DIODE_DIRECTION == ROW2COL)
  // Set col, read rows
  for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
    changed |= read_rows_on_col(raw_matrix, current_col);
  }
#endif

  debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed);

  return 1;
}

uint8_t matrix_scan(void) {
  uint8_t ret = _matrix_scan();

  if (is_keyboard_master()) {
    static uint8_t error_count;

    if (!transport_master(matrix + thatHand)) {
      error_count++;

      if (error_count > ERROR_DISCONNECT_COUNT) {
        // reset other half if disconnected
        for (int i = 0; i < ROWS_PER_HAND; ++i) {
          matrix[thatHand + i] = 0;
        }
      }
    } else {
      error_count = 0;
    }

    matrix_scan_quantum();
  } else {
    transport_slave(matrix + thisHand);
    matrix_slave_scan_user();
  }

  return ret;
}

A keyboards/ai03/orbit/matrix.h => keyboards/ai03/orbit/matrix.h +3 -0
@@ 0,0 1,3 @@
#pragma once

#include <common/matrix.h>

A keyboards/ai03/orbit/orbit.c => keyboards/ai03/orbit/orbit.c +228 -0
@@ 0,0 1,228 @@
/* Copyright 2018 Ryota Goto
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include "orbit.h"
#include "split_util.h"
#include "transport.h"


// Call led_toggle to set LEDs easily
// LED IDs:
// 
// (LEFT) 0 1 2   |   3 4 5 (RIGHT)

void led_toggle(int id, bool on) {
	
	if (isLeftHand) {
		switch(id) {
			case 0:
				// Left hand C6
				if (on)
					//PORTC |= (1<<6);
					writePinHigh(C6);
				else
					//PORTC &= ~(1<<6);
					writePinLow(C6);
				break;
			case 1:
				// Left hand B6
				if (on)
					//PORTB |= (1<<6);
					writePinHigh(B6);
				else
					//PORTB &= ~(1<<6);
					writePinLow(B6);
				break;
			case 2:
				// Left hand B5
				if (on)
					//PORTB |= (1<<5);
					writePinHigh(B5);
				else
					//PORTB &= ~(1<<5);
					writePinLow(B5);
				break;
			default:
				break;
		}
	} else {
		switch(id) {
			case 3:
				// Right hand F6
				if (on)
					//PORTF |= (1<<6);
					writePinHigh(F6);
				else
					//PORTF &= ~(1<<6);
					writePinLow(F6);
				break;
			case 4:
				// Right hand F7
				if (on)
					//PORTF |= (1<<7);
					writePinHigh(F7);
				else
					//PORTF &= ~(1<<7);
					writePinLow(F7);
				break;
			case 5:
				// Right hand C7
				if (on)
					//PORTC |= (1<<7);
					writePinHigh(C7);
				else
					//PORTC &= ~(1<<7);
					writePinLow(C7);
				break;
			default:
				break;
		}
	}
}

// Set all LEDs at once using an array of 6 booleans
// LED IDs:
// 
// (LEFT) 0 1 2   |   3 4 5 (RIGHT)
// 
// Ex. set_all_leds({ false, false, false, true, true, true }) would turn off left hand, turn on right hand

void set_all_leds(bool leds[6]) {
	for (int i = 0; i < 6; i++) {
		led_toggle(i, leds[i]);
	}
}

void set_layer_indicators(uint8_t layer) {
	
	switch (layer)
	{
		case 0:
			led_toggle(0, true);
			led_toggle(1, false);
			led_toggle(2, false);
			break;
		case 1:
			led_toggle(0, true);
			led_toggle(1, true);
			led_toggle(2, false);
			break;
		case 2:
			led_toggle(0, true);
			led_toggle(1, true);
			led_toggle(2, true);
			break;
		case 3:
			led_toggle(0, false);
			led_toggle(1, true);
			led_toggle(2, true);
			break;
		case 4:
			led_toggle(0, false);
			led_toggle(1, false);
			led_toggle(2, true);
			break;
		default:
			led_toggle(0, true);
			led_toggle(1, false);
			led_toggle(2, true);
			break;
	}
	
}

void matrix_init_kb(void) {
	// put your keyboard start-up code here
	// runs once when the firmware starts up
	
	// Initialize indicator LEDs to output
	if (isLeftHand)
	{
		setPinOutput(C6);
		setPinOutput(B6);
		setPinOutput(B5);
		//DDRC |= (1<<6);
		//DDRB |= (1<<6);
		//DDRB |= (1<<5);
	}
	else
	{
		setPinOutput(F6);
		setPinOutput(F7);
		setPinOutput(C7);
		//DDRF |= (1<<6);
		//DDRF |= (1<<7);
		//DDRC |= (1<<7);
	}

	set_layer_indicators(0);
	
	matrix_init_user();
}

void matrix_scan_kb(void) {
	// put your looping keyboard code here
	// runs every cycle (a lot)

	matrix_scan_user();
}

bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
	// put your per-action keyboard code here
	// runs for every action, just before processing by the firmware

	return process_record_user(keycode, record);
}

void led_set_kb(uint8_t usb_led) {
	// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
	
	if (is_keyboard_master()) {
	
		serial_m2s_buffer.nlock_led = IS_LED_ON(usb_led, USB_LED_NUM_LOCK);
		serial_m2s_buffer.clock_led = IS_LED_ON(usb_led, USB_LED_CAPS_LOCK);
		serial_m2s_buffer.slock_led = IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK);

		led_toggle(3, IS_LED_ON(usb_led, USB_LED_NUM_LOCK));
		led_toggle(4, IS_LED_ON(usb_led, USB_LED_CAPS_LOCK));
		led_toggle(5, IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK));
		
	}

	led_set_user(usb_led);
}

uint32_t layer_state_set_kb(uint32_t state) {
	
	if (is_keyboard_master())
	{
		
		current_layer = biton32(state);
		serial_m2s_buffer.current_layer = biton32(state);
		
		// If left half, do the LED toggle thing
		if (isLeftHand)
		{
			set_layer_indicators(biton32(state));
		}
		
	}
	// NOTE: Do not set slave LEDs here.
	// This is not called on slave
	
	return layer_state_set_user(state);
}



A keyboards/ai03/orbit/orbit.h => keyboards/ai03/orbit/orbit.h +65 -0
@@ 0,0 1,65 @@
/* Copyright 2018 Ryota Goto
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#ifndef ORBIT_H
#define ORBIT_H

#include "quantum.h"

/* This a shortcut to help you visually see your layout.
 *
 * The first section contains all of the arguments representing the physical
 * layout of the board and position of the keys.
 *
 * The second converts the arguments into a two-dimensional array which
 * represents the switch matrix.
 */
 
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
  #include <avr/io.h>
  #include <avr/interrupt.h>
#endif
#endif


#define LAYOUT( \
    L00, L01, L02, L03, L04, L05, L06, R00, R01, R02, R03, R04, R05, R06, \
	L10, L11, L12, L13, L14, L15, L16, R10, R11, R12, R13, R14, R15, R16, \
	L20, L21, L22, L23, L24, L25, L26, R20, R21, R22, R23, R24, R25, R26, \
	L30, L31, L32, L33, L34, L35, L36, R30, R31, R32, R33, R34, R35, R36, \
         L41, L42, L43, L44, L45, L46, R40, R41, R42, R43, R44, R45 \
) \
{ \
	{ L00,   L01,   L02,   L03,   L04,   L05,   L06 }, \
	{ L10,   L11,   L12,   L13,   L14,   L15,   L16 }, \
	{ L20,   L21,   L22,   L23,   L24,   L25,   L26 }, \
	{ L30,   L31,   L32,   L33,   L34,   L35,   L36 }, \
	{ KC_NO, L41,   L42,   L43,   L44,   L45,   L46 }, \
	{ R00,   R01,   R02,   R03,   R04,   R05,   R06 }, \
	{ R10,   R11,   R12,   R13,   R14,   R15,   R16 }, \
	{ R20,   R21,   R22,   R23,   R24,   R25,   R26 }, \
	{ R30,   R31,   R32,   R33,   R34,   R35,   R36 }, \
	{ R40,   R41,   R42,   R43,   R44,   R45, KC_NO }  \
}

uint8_t current_layer;

extern void led_toggle(int id, bool on);
void set_all_leds(bool leds[6]);
extern void set_layer_indicators(uint8_t layer);

#endif

A keyboards/ai03/orbit/readme.md => keyboards/ai03/orbit/readme.md +15 -0
@@ 0,0 1,15 @@
# Orbit

![Orbit](https://raw.githubusercontent.com/ai03-2725/Orbit/master/Images/PCB-R2.0.jpg) 

A split ergonomic keyboard project.  

Keyboard Maintainer: [ai03](https://github.com/ai03-2725)  
Hardware Supported: The [Orbit PCB](https://github.com/ai03-2725/Orbit)  
Hardware Availability: [This repository](https://github.com/ai03-2725/Orbit) has PCB files. Case group buy orders are currently closed.  

Make example for this keyboard (after setting up your build environment):

    make ai03/orbit:default

See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

A keyboards/ai03/orbit/rules.mk => keyboards/ai03/orbit/rules.mk +92 -0
@@ 0,0 1,92 @@
SRC += split_util.c \
	   split_flags.c \
	   serial.c \
	   transport.c \
	   matrix.c

# MCU name
#MCU = at90usb1286
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = no       # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes       # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes       # Audio control and System control(+450)
CONSOLE_ENABLE = no         # Console for debug(+400)
COMMAND_ENABLE = no         # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no       # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = yes           # USB Nkey Rollover
BACKLIGHT_ENABLE = yes      # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = no        # Enable keyboard RGB underglow
MIDI_ENABLE = no            # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
USE_I2C = no                # I2C for split communication
CUSTOM_MATRIX = yes			# For providing custom matrix.c (in this case, override regular matrix.c with split matrix.c)
# SPLIT_KEYBOARD = yes		# Split keyboard flag disabled as manual edits had to be done to the split common files



A keyboards/ai03/orbit/serial.c => keyboards/ai03/orbit/serial.c +546 -0
@@ 0,0 1,546 @@
/*
 * WARNING: be careful changing this code, it is very timing dependent
 *
 * 2018-10-28 checked
 *  avr-gcc 4.9.2
 *  avr-gcc 5.4.0
 *  avr-gcc 7.3.0
 */

#ifndef F_CPU
#define F_CPU 16000000
#endif

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"
//#include <pro_micro.h>

#ifdef SOFT_SERIAL_PIN

#ifdef __AVR_ATmega32U4__
  // if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial.
  #ifdef USE_AVR_I2C
    #if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1
      #error Using ATmega32U4 I2C, so can not use PD0, PD1
    #endif
  #endif

  #if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3
    #define SERIAL_PIN_DDR   DDRD
    #define SERIAL_PIN_PORT  PORTD
    #define SERIAL_PIN_INPUT PIND
    #if SOFT_SERIAL_PIN == D0
      #define SERIAL_PIN_MASK _BV(PD0)
      #define EIMSK_BIT       _BV(INT0)
      #define EICRx_BIT       (~(_BV(ISC00) | _BV(ISC01)))
      #define SERIAL_PIN_INTERRUPT INT0_vect
    #elif  SOFT_SERIAL_PIN == D1
      #define SERIAL_PIN_MASK _BV(PD1)
      #define EIMSK_BIT       _BV(INT1)
      #define EICRx_BIT       (~(_BV(ISC10) | _BV(ISC11)))
      #define SERIAL_PIN_INTERRUPT INT1_vect
    #elif  SOFT_SERIAL_PIN == D2
      #define SERIAL_PIN_MASK _BV(PD2)
      #define EIMSK_BIT       _BV(INT2)
      #define EICRx_BIT       (~(_BV(ISC20) | _BV(ISC21)))
      #define SERIAL_PIN_INTERRUPT INT2_vect
    #elif  SOFT_SERIAL_PIN == D3
      #define SERIAL_PIN_MASK _BV(PD3)
      #define EIMSK_BIT       _BV(INT3)
      #define EICRx_BIT       (~(_BV(ISC30) | _BV(ISC31)))
      #define SERIAL_PIN_INTERRUPT INT3_vect
    #endif
  #elif  SOFT_SERIAL_PIN == E6
    #define SERIAL_PIN_DDR   DDRE
    #define SERIAL_PIN_PORT  PORTE
    #define SERIAL_PIN_INPUT PINE
    #define SERIAL_PIN_MASK  _BV(PE6)
    #define EIMSK_BIT        _BV(INT6)
    #define EICRx_BIT        (~(_BV(ISC60) | _BV(ISC61)))
    #define SERIAL_PIN_INTERRUPT INT6_vect
  #else
  #error invalid SOFT_SERIAL_PIN value
  #endif

#else
 #error serial.c now support ATmega32U4 only
#endif

#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x)    __builtin_avr_delay_cycles(x)

// parity check
#define ODD_PARITY 1
#define EVEN_PARITY 0
#define PARITY EVEN_PARITY

#ifdef SERIAL_DELAY
  // custom setup in config.h
  // #define TID_SEND_ADJUST 2
  // #define SERIAL_DELAY 6             // micro sec
  // #define READ_WRITE_START_ADJUST 30 // cycles
  // #define READ_WRITE_WIDTH_ADJUST 8 // cycles
#else
// ============ Standard setups ============

#ifndef SELECT_SOFT_SERIAL_SPEED
#define SELECT_SOFT_SERIAL_SPEED 1
//  0: about 189kbps (Experimental only)
//  1: about 137kbps (default)
//  2: about 75kbps
//  3: about 39kbps
//  4: about 26kbps
//  5: about 20kbps
#endif

#if __GNUC__ < 6
  #define TID_SEND_ADJUST 14
#else
  #define TID_SEND_ADJUST 2
#endif

#if SELECT_SOFT_SERIAL_SPEED == 0
  // Very High speed
  #define SERIAL_DELAY 4             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 34 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 1
  // High speed
  #define SERIAL_DELAY 6             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 30 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 2
  // Middle speed
  #define SERIAL_DELAY 12            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 3
  // Low speed
  #define SERIAL_DELAY 24            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 4
  // Very Low speed
  #define SERIAL_DELAY 36            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 5
  // Ultra Low speed
  #define SERIAL_DELAY 48            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#else
#error invalid SELECT_SOFT_SERIAL_SPEED value
#endif /* SELECT_SOFT_SERIAL_SPEED */
#endif /* SERIAL_DELAY */

#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)

#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
  #define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
  #define SLAVE_INT_ACK_WIDTH_UNIT 2
  #define SLAVE_INT_ACK_WIDTH 4
#endif

static SSTD_t *Transaction_table = NULL;
static uint8_t Transaction_table_size = 0;

inline static void serial_delay(void) ALWAYS_INLINE;
inline static
void serial_delay(void) {
  _delay_us(SERIAL_DELAY);
}

inline static void serial_delay_half1(void) ALWAYS_INLINE;
inline static
void serial_delay_half1(void) {
  _delay_us(SERIAL_DELAY_HALF1);
}

inline static void serial_delay_half2(void) ALWAYS_INLINE;
inline static
void serial_delay_half2(void) {
  _delay_us(SERIAL_DELAY_HALF2);
}

inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
  SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}

// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
  SERIAL_PIN_DDR  &= ~SERIAL_PIN_MASK;
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

inline static uint8_t serial_read_pin(void) ALWAYS_INLINE;
inline static
uint8_t serial_read_pin(void) {
  return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}

inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
  SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}

inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_output();
    serial_high();
}

void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_input_with_pullup();

    // Enable INT0-INT3,INT6
    EIMSK |= EIMSK_BIT;
#if SERIAL_PIN_MASK == _BV(PE6)
    // Trigger on falling edge of INT6
    EICRB &= EICRx_BIT;
#else
    // Trigger on falling edge of INT0-INT3
    EICRA &= EICRx_BIT;
#endif
}

// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
  for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
  }
  // This shouldn't hang if the target disconnects because the
  // serial line will float to high if the target does disconnect.
  while (!serial_read_pin());
}

// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void) NO_INLINE;
static
void sync_send(void) {
  serial_low();
  serial_delay();
  serial_high();
}

// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
    uint8_t byte, i, p, pb;

  _delay_sub_us(READ_WRITE_START_ADJUST);
  for( i = 0, byte = 0, p = PARITY; i < bit; i++ ) {
      serial_delay_half1();   // read the middle of pulses
      if( serial_read_pin() ) {
          byte = (byte << 1) | 1; p ^= 1;
      } else {
          byte = (byte << 1) | 0; p ^= 0;
      }
      _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
      serial_delay_half2();
  }
  /* recive parity bit */
  serial_delay_half1();   // read the middle of pulses
  pb = serial_read_pin();
  _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
  serial_delay_half2();

  *pterrcount += (p != pb)? 1 : 0;

  return byte;
}

// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
    uint8_t b, p;
    for( p = PARITY, b = 1<<(bit-1); b ; b >>= 1) {
        if(data & b) {
            serial_high(); p ^= 1;
        } else {
            serial_low();  p ^= 0;
        }
        serial_delay();
    }
    /* send parity bit */
    if(p & 1) { serial_high(); }
    else      { serial_low(); }
    serial_delay();

    serial_low(); // sync_send() / senc_recv() need raise edge
}

static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    data = buffer[i];
    sync_send();
    serial_write_chunk(data,8);
  }
}

static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
  uint8_t pecount = 0;
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    sync_recv();
    data = serial_read_chunk(&pecount, 8);
    buffer[i] = data;
  }
  return pecount == 0;
}

inline static
void change_sender2reciver(void) {
    sync_send();          //0
    serial_delay_half1(); //1
    serial_low();         //2
    serial_input_with_pullup(); //2
    serial_delay_half1(); //3
}

inline static
void change_reciver2sender(void) {
    sync_recv();     //0
    serial_delay();  //1
    serial_low();    //3
    serial_output(); //3
    serial_delay_half1(); //4
}

static inline uint8_t nibble_bits_count(uint8_t bits)
{
    bits = (bits & 0x5) + (bits >> 1 & 0x5);
    bits = (bits & 0x3) + (bits >> 2 & 0x3);
    return bits;
}

// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {

#ifndef SERIAL_USE_MULTI_TRANSACTION
  serial_low();
  serial_output();
  SSTD_t *trans = Transaction_table;
#else
  // recive transaction table index
  uint8_t tid, bits;
  uint8_t pecount = 0;
  sync_recv();
  bits = serial_read_chunk(&pecount,7);
  tid = bits>>3;
  bits = (bits&7) != nibble_bits_count(tid);
  if( bits || pecount> 0 || tid > Transaction_table_size ) {
      return;
  }
  serial_delay_half1();

  serial_high(); // response step1 low->high
  serial_output();
  _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
  SSTD_t *trans = &Transaction_table[tid];
  serial_low(); // response step2 ack high->low
#endif

  // target send phase
  if( trans->target2initiator_buffer_size > 0 )
      serial_send_packet((uint8_t *)trans->target2initiator_buffer,
                         trans->target2initiator_buffer_size);
  // target switch to input
  change_sender2reciver();

  // target recive phase
  if( trans->initiator2target_buffer_size > 0 ) {
      if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
                               trans->initiator2target_buffer_size) ) {
          *trans->status = TRANSACTION_ACCEPTED;
      } else {
          *trans->status = TRANSACTION_DATA_ERROR;
      }
  } else {
      *trans->status = TRANSACTION_ACCEPTED;
  }

  sync_recv(); //weit initiator output to high
}

/////////
//  start transaction by initiator
//
// int  soft_serial_transaction(int sstd_index)
//
// Returns:
//    TRANSACTION_END
//    TRANSACTION_NO_RESPONSE
//    TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_transaction(void) {
  SSTD_t *trans = Transaction_table;
#else
int  soft_serial_transaction(int sstd_index) {
  if( sstd_index > Transaction_table_size )
      return TRANSACTION_TYPE_ERROR;
  SSTD_t *trans = &Transaction_table[sstd_index];
#endif
  cli();

  // signal to the target that we want to start a transaction
  serial_output();
  serial_low();
  _delay_us(SLAVE_INT_WIDTH_US);

#ifndef SERIAL_USE_MULTI_TRANSACTION
  // wait for the target response
  serial_input_with_pullup();
  _delay_us(SLAVE_INT_RESPONSE_TIME);

  // check if the target is present
  if (serial_read_pin()) {
    // target failed to pull the line low, assume not present
    serial_output();
    serial_high();
    *trans->status = TRANSACTION_NO_RESPONSE;
    sei();
    return TRANSACTION_NO_RESPONSE;
  }

#else
  // send transaction table index
  int tid = (sstd_index<<3) | (7 & nibble_bits_count(sstd_index));
  sync_send();
  _delay_sub_us(TID_SEND_ADJUST);
  serial_write_chunk(tid, 7);
  serial_delay_half1();

  // wait for the target response (step1 low->high)
  serial_input_with_pullup();
  while( !serial_read_pin() ) {
      _delay_sub_us(2);
  }

  // check if the target is present (step2 high->low)
  for( int i = 0; serial_read_pin(); i++ ) {
      if (i > SLAVE_INT_ACK_WIDTH + 1) {
          // slave failed to pull the line low, assume not present
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_NO_RESPONSE;
          sei();
          return TRANSACTION_NO_RESPONSE;
      }
      _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
  }
#endif

  // initiator recive phase
  // if the target is present syncronize with it
  if( trans->target2initiator_buffer_size > 0 ) {
      if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
                                trans->target2initiator_buffer_size) ) {
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_DATA_ERROR;
          sei();
          return TRANSACTION_DATA_ERROR;
      }
   }

  // initiator switch to output
  change_reciver2sender();

  // initiator send phase
  if( trans->initiator2target_buffer_size > 0 ) {
      serial_send_packet((uint8_t *)trans->initiator2target_buffer,
                         trans->initiator2target_buffer_size);
  }

  // always, release the line when not in use
  sync_send();

  *trans->status = TRANSACTION_END;
  sei();
  return TRANSACTION_END;
}

#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
    SSTD_t *trans = &Transaction_table[sstd_index];
    cli();
    int retval = *trans->status;
    *trans->status = 0;;
    sei();
    return retval;
}
#endif

#endif

// Helix serial.c history
//   2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc)
//   2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4)
//             (adjusted with avr-gcc 4.9.2)
//   2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78)
//             (adjusted with avr-gcc 4.9.2)
//   2018-8-11 add support multi-type transaction (#3608, feb5e4aae)
//             (adjusted with avr-gcc 4.9.2)
//   2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff)
//             (adjusted with avr-gcc 7.3.0)
//   2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66)
//             (adjusted with avr-gcc 5.4.0, 7.3.0)
//   2018-12-17 copy to TOP/quantum/split_common/ and remove backward compatibility code (#4669)

A keyboards/ai03/orbit/serial.h => keyboards/ai03/orbit/serial.h +62 -0
@@ 0,0 1,62 @@
#pragma once

#include <stdbool.h>

// /////////////////////////////////////////////////////////////////
// Need Soft Serial defines in config.h
// /////////////////////////////////////////////////////////////////
// ex.
//  #define SOFT_SERIAL_PIN ??   // ?? = D0,D1,D2,D3,E6
//  OPTIONAL: #define SELECT_SOFT_SERIAL_SPEED ? // ? = 1,2,3,4,5
//                                               //  1: about 137kbps (default)
//                                               //  2: about 75kbps
//                                               //  3: about 39kbps
//                                               //  4: about 26kbps
//                                               //  5: about 20kbps
//
// //// USE simple API (using signle-type transaction function)
//   /* nothing */
// //// USE flexible API (using multi-type transaction function)
//   #define SERIAL_USE_MULTI_TRANSACTION
//
// /////////////////////////////////////////////////////////////////

// Soft Serial Transaction Descriptor
typedef struct _SSTD_t  {
    uint8_t *status;
    uint8_t initiator2target_buffer_size;
    uint8_t *initiator2target_buffer;
    uint8_t target2initiator_buffer_size;
    uint8_t *target2initiator_buffer;
} SSTD_t;
#define TID_LIMIT( table ) (sizeof(table) / sizeof(SSTD_t))

// initiator is transaction start side
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size);
// target is interrupt accept side
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size);

// initiator resullt
#define TRANSACTION_END 0
#define TRANSACTION_NO_RESPONSE 0x1
#define TRANSACTION_DATA_ERROR  0x2
#define TRANSACTION_TYPE_ERROR  0x4
#ifndef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_transaction(void);
#else
int  soft_serial_transaction(int sstd_index);
#endif

// target status
// *SSTD_t.status has
//   initiator:
//       TRANSACTION_END
//    or TRANSACTION_NO_RESPONSE
//    or TRANSACTION_DATA_ERROR
//   target:
//       TRANSACTION_DATA_ERROR
//    or TRANSACTION_ACCEPTED
#define TRANSACTION_ACCEPTED 0x8
#ifdef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_get_and_clean_status(int sstd_index);
#endif

A keyboards/ai03/orbit/split_flags.c => keyboards/ai03/orbit/split_flags.c +5 -0
@@ 0,0 1,5 @@
#include "split_flags.h"

volatile bool RGB_DIRTY = false;

volatile bool BACKLIT_DIRTY = false;
\ No newline at end of file

A keyboards/ai03/orbit/split_flags.h => keyboards/ai03/orbit/split_flags.h +15 -0
@@ 0,0 1,15 @@
#pragma once

#include <stdbool.h>
#include <stdint.h>

/**
* Global Flags
**/

//RGB Stuff
extern volatile bool RGB_DIRTY;


//Backlight Stuff
extern volatile bool BACKLIT_DIRTY;

A keyboards/ai03/orbit/split_util.c => keyboards/ai03/orbit/split_util.c +87 -0
@@ 0,0 1,87 @@
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#include "timer.h"
#include "split_flags.h"
#include "transport.h"
#include "quantum.h"

#ifdef EE_HANDS
#   include "tmk_core/common/eeprom.h"
#   include "eeconfig.h"
#endif

volatile bool isLeftHand = true;

__attribute__((weak))
bool is_keyboard_left(void) {
  #ifdef SPLIT_HAND_PIN
    // Test pin SPLIT_HAND_PIN for High/Low, if low it's right hand
    setPinInput(SPLIT_HAND_PIN);
    return readPin(SPLIT_HAND_PIN);
  #else
    #ifdef EE_HANDS
      return eeprom_read_byte(EECONFIG_HANDEDNESS);
    #else
      #ifdef MASTER_RIGHT
        return !is_keyboard_master();
      #else
        return is_keyboard_master();
      #endif
    #endif
  #endif
}

bool is_keyboard_master(void)
{
#ifdef __AVR__
  static enum { UNKNOWN, MASTER, SLAVE } usbstate = UNKNOWN;

  // only check once, as this is called often
  if (usbstate == UNKNOWN)
  {
    USBCON |= (1 << OTGPADE);  // enables VBUS pad
    wait_us(5);

    usbstate = (USBSTA & (1 << VBUS)) ? MASTER : SLAVE;  // checks state of VBUS
  }

  return (usbstate == MASTER);
#else
  return true;
#endif
}

static void keyboard_master_setup(void) {
#if defined(USE_I2C) || defined(EH)
  #ifdef SSD1306OLED
    matrix_master_OLED_init ();
  #endif
#endif
  transport_master_init();

  // For master the Backlight info needs to be sent on startup
  // Otherwise the salve won't start with the proper info until an update
  BACKLIT_DIRTY = true;
}

static void keyboard_slave_setup(void)
{
  transport_slave_init();
}

// this code runs before the usb and keyboard is initialized
void matrix_setup(void)
{
  isLeftHand = is_keyboard_left();

  if (is_keyboard_master())
  {
    keyboard_master_setup();
  }
  else
  {
    keyboard_slave_setup();
  }
}

A keyboards/ai03/orbit/split_util.h => keyboards/ai03/orbit/split_util.h +10 -0
@@ 0,0 1,10 @@
#pragma once

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

extern volatile bool isLeftHand;

void matrix_master_OLED_init (void);

A keyboards/ai03/orbit/transport.c => keyboards/ai03/orbit/transport.c +238 -0
@@ 0,0 1,238 @@

#include "transport.h"

#include "config.h"
#include "matrix.h"
#include "quantum.h"

#include "orbit.h"

#define ROWS_PER_HAND (MATRIX_ROWS/2)

#ifdef RGBLIGHT_ENABLE
#   include "rgblight.h"
#endif

#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
  extern backlight_config_t backlight_config;
#endif

#if defined(USE_I2C) || defined(EH)

#include "i2c.h"

#ifndef SLAVE_I2C_ADDRESS
#  define SLAVE_I2C_ADDRESS           0x32
#endif

#if (MATRIX_COLS > 8)
#  error "Currently only supports 8 COLS"
#endif

// Get rows from other half over i2c
bool transport_master(matrix_row_t matrix[]) {
  int err = 0;

  // write backlight info
#ifdef BACKLIGHT_ENABLE
  if (BACKLIT_DIRTY) {
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) { goto i2c_error; }

    // Backlight location
    err = i2c_master_write(I2C_BACKLIT_START);
    if (err) { goto i2c_error; }

    // Write backlight
    i2c_master_write(get_backlight_level());

    BACKLIT_DIRTY = false;
  }
#endif

  err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  if (err) { goto i2c_error; }

  // start of matrix stored at I2C_KEYMAP_START
  err = i2c_master_write(I2C_KEYMAP_START);
  if (err) { goto i2c_error; }

  // Start read
  err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  if (err) { goto i2c_error; }

  if (!err) {
    int i;
    for (i = 0; i < ROWS_PER_HAND-1; ++i) {
      matrix[i] = i2c_master_read(I2C_ACK);
    }
    matrix[i] = i2c_master_read(I2C_NACK);
    i2c_master_stop();
  } else {
i2c_error: // the cable is disconnceted, or something else went wrong
    i2c_reset_state();
    return false;
  }

#ifdef RGBLIGHT_ENABLE
  if (RGB_DIRTY) {
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) { goto i2c_error; }

    // RGB Location
    err = i2c_master_write(I2C_RGB_START);
    if (err) { goto i2c_error; }

    uint32_t dword = eeconfig_read_rgblight();

    // Write RGB
    err = i2c_master_write_data(&dword, 4);
    if (err) { goto i2c_error; }

    RGB_DIRTY = false;
    i2c_master_stop();
  }
#endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {

  for (int i = 0; i < ROWS_PER_HAND; ++i)
  {
    i2c_slave_buffer[I2C_KEYMAP_START + i] = matrix[i];
  }
  // Read Backlight Info
  #ifdef BACKLIGHT_ENABLE
  if (BACKLIT_DIRTY)
  {
    backlight_set(i2c_slave_buffer[I2C_BACKLIT_START]);
    BACKLIT_DIRTY = false;
  }
  #endif
  #ifdef RGBLIGHT_ENABLE
  if (RGB_DIRTY)
  {
    // Disable interupts (RGB data is big)
    cli();
    // Create new DWORD for RGB data
    uint32_t dword;

    // Fill the new DWORD with the data that was sent over
    uint8_t * dword_dat = (uint8_t *)(&dword);
    for (int i = 0; i < 4; i++)
    {
      dword_dat[i] = i2c_slave_buffer[I2C_RGB_START + i];
    }

    // Update the RGB now with the new data and set RGB_DIRTY to false
    rgblight_update_dword(dword);
    RGB_DIRTY = false;
    // Re-enable interupts now that RGB is set
    sei();
  }
  #endif
}

void transport_master_init(void) {
  i2c_master_init();
}

void transport_slave_init(void) {
  i2c_slave_init(SLAVE_I2C_ADDRESS);
}

#else // USE_SERIAL

#include "serial.h"



volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
uint8_t volatile status0 = 0;

SSTD_t transactions[] = {
  { (uint8_t *)&status0,
    sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer,
    sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer
  }
};

uint8_t slave_layer_cache;
uint8_t slave_nlock_cache;
uint8_t slave_clock_cache;
uint8_t slave_slock_cache;

void transport_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }

void transport_slave_init(void)
{ 
	soft_serial_target_init(transactions, TID_LIMIT(transactions)); 
	slave_layer_cache = 255;
	slave_nlock_cache = 255;
	slave_clock_cache = 255;
	slave_slock_cache = 255;
}

bool transport_master(matrix_row_t matrix[]) {

  if (soft_serial_transaction()) {
    return false;
  }

  // TODO:  if MATRIX_COLS > 8 change to unpack()
  for (int i = 0; i < ROWS_PER_HAND; ++i) {
    matrix[i] = serial_s2m_buffer.smatrix[i];
  }

  #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    // Code to send RGB over serial goes here (not implemented yet)
  #endif

  #ifdef BACKLIGHT_ENABLE
    // Write backlight level for slave to read
    serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
  #endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {

  // TODO: if MATRIX_COLS > 8 change to pack()
  for (int i = 0; i < ROWS_PER_HAND; ++i)
  {
    serial_s2m_buffer.smatrix[i] = matrix[i];
  }
  #ifdef BACKLIGHT_ENABLE
    backlight_set(serial_m2s_buffer.backlight_level);
  #endif
  #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  // Add serial implementation for RGB here
  #endif
  
  if (slave_layer_cache != serial_m2s_buffer.current_layer) {  
	slave_layer_cache = serial_m2s_buffer.current_layer;
	set_layer_indicators(slave_layer_cache);
  }
  
  if (slave_nlock_cache != serial_m2s_buffer.nlock_led) {
	slave_nlock_cache = serial_m2s_buffer.nlock_led;
	led_toggle(3, slave_nlock_cache);
  }
  if (slave_clock_cache != serial_m2s_buffer.clock_led) {
	slave_clock_cache = serial_m2s_buffer.clock_led;
	led_toggle(4, slave_clock_cache);
  }
  if (slave_slock_cache != serial_m2s_buffer.slock_led) {
	slave_slock_cache = serial_m2s_buffer.slock_led;
	led_toggle(5, slave_slock_cache);
  }
  
}

#endif

A keyboards/ai03/orbit/transport.h => keyboards/ai03/orbit/transport.h +42 -0
@@ 0,0 1,42 @@
#pragma once

#include <common/matrix.h>

#define ROWS_PER_HAND (MATRIX_ROWS/2)

typedef struct _Serial_s2m_buffer_t {
  // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack
  matrix_row_t smatrix[ROWS_PER_HAND];
} Serial_s2m_buffer_t;

typedef struct _Serial_m2s_buffer_t {
#ifdef BACKLIGHT_ENABLE
    uint8_t backlight_level;
#endif
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    rgblight_config_t rgblight_config; //not yet use
    //
    // When MCUs on both sides drive their respective RGB LED chains,
    // it is necessary to synchronize, so it is necessary to communicate RGB information.
    // In that case, define the RGBLIGHT_SPLIT macro.
    //
    // Otherwise, if the master side MCU drives both sides RGB LED chains,
    // there is no need to communicate.
#endif

	uint8_t current_layer;
	uint8_t nlock_led;
	uint8_t clock_led;
	uint8_t slock_led;

} Serial_m2s_buffer_t;

extern volatile Serial_s2m_buffer_t serial_s2m_buffer;
extern volatile Serial_m2s_buffer_t serial_m2s_buffer;

void transport_master_init(void);
void transport_slave_init(void);

// returns false if valid data not received from slave
bool transport_master(matrix_row_t matrix[]);
void transport_slave(matrix_row_t matrix[]);