~ruther/qmk_firmware

8e88d55bfd7c88cb15845e0c6415e4e892532861 — Jack Humbert 9 years ago 21ee3eb
reverts #343 for the most part (#474)

M quantum/matrix.c => quantum/matrix.c +163 -129
@@ 26,32 26,46 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include "util.h"
#include "matrix.h"

#ifdef MATRIX_HAS_GHOST
#   error "The universal matrix.c file cannot be used for this keyboard."
#endif
/* Set 0 if debouncing isn't needed */
/*
 * This constant define not debouncing time in msecs, but amount of matrix
 * scan loops which should be made to get stable debounced results.
 *
 * On Ergodox matrix scan rate is relatively low, because of slow I2C.
 * Now it's only 317 scans/second, or about 3.15 msec/scan.
 * According to Cherry specs, debouncing time is 5 msec.
 *
 * And so, there is no sense to have DEBOUNCE higher than 2.
 */

#ifndef DEBOUNCING_DELAY
#   define DEBOUNCING_DELAY 5
#endif
static uint8_t debouncing = DEBOUNCING_DELAY;

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state */
#if DIODE_DIRECTION == COL2ROW

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
#else
static matrix_col_t matrix[MATRIX_COLS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

#if DIODE_DIRECTION == ROW2COL
    static matrix_row_t matrix_reversed[MATRIX_COLS];
    static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS];
#endif
static int8_t debouncing_delay = -1;

#if DIODE_DIRECTION == COL2ROW
static void toggle_row(uint8_t row);
static matrix_row_t read_cols(void);
#if MATRIX_COLS > 16
    #define SHIFTER 1UL
#else
static void toggle_col(uint8_t col);
static matrix_col_t read_rows(void);
    #define SHIFTER 1
#endif

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);

__attribute__ ((weak))
void matrix_init_quantum(void) {
    matrix_init_kb();


@@ 80,10 94,12 @@ __attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void) {
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void) {
    return MATRIX_COLS;
}


@@ 113,161 129,179 @@ uint8_t matrix_cols(void) {
// }

void matrix_init(void) {
    /* frees PORTF by setting the JTD bit twice within four cycles */
    // To use PORTF disable JTAG with writing JTD bit twice within four cycles.
    #ifdef __AVR_ATmega32U4__
        MCUCR |= _BV(JTD);
        MCUCR |= _BV(JTD);
    #endif
    /* initializes the I/O pins */
#if DIODE_DIRECTION == COL2ROW
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        /* DDRxn */
        _SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF);
        toggle_row(r);
    }
    for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
        /* PORTxn */
        _SFR_IO8((col_pins[c] >> 4) + 2) |= _BV(col_pins[c] & 0xF);
    }
#else
    for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
        /* DDRxn */
        _SFR_IO8((col_pins[c] >> 4) + 1) |= _BV(col_pins[c] & 0xF);
        toggle_col(c);
    }
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        /* PORTxn */
        _SFR_IO8((row_pins[r] >> 4) + 2) |= _BV(row_pins[r] & 0xF);

    // initialize row and col
    unselect_rows();
    init_cols();

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }
#endif

    matrix_init_quantum();
}

uint8_t matrix_scan(void)
{

#if DIODE_DIRECTION == COL2ROW
uint8_t matrix_scan(void) {
    static matrix_row_t debouncing_matrix[MATRIX_ROWS];
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        toggle_row(r);
        matrix_row_t state = read_cols();
        if (debouncing_matrix[r] != state) {
            debouncing_matrix[r] = state;
            debouncing_delay = DEBOUNCING_DELAY;
        }
        toggle_row(r);
    }
    if (debouncing_delay >= 0) {
        dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
        --debouncing_delay;
        if (debouncing_delay >= 0) {
            wait_ms(1);
        }
        else {
            for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
                matrix[r] = debouncing_matrix[r];
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        select_row(i);
        wait_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        if (matrix_debouncing[i] != cols) {
            matrix_debouncing[i] = cols;
            if (debouncing) {
                debug("bounce!: "); debug_hex(debouncing); debug("\n");
            }
            debouncing = DEBOUNCING_DELAY;
        }
        unselect_rows();
    }
    matrix_scan_quantum();
    return 1;
}

static void toggle_row(uint8_t row) {
    /* PINxn */
    _SFR_IO8((row_pins[row] >> 4)) = _BV(row_pins[row] & 0xF);
}

static matrix_row_t read_cols(void) {
    matrix_row_t state = 0;
    for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
        /* PINxn */
        if (!(_SFR_IO8((col_pins[c] >> 4)) & _BV(col_pins[c] & 0xF))) {
            state |= (matrix_row_t)1 << c;
    if (debouncing) {
        if (--debouncing) {
            wait_us(1);
        } else {
            for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
                matrix[i] = matrix_debouncing[i];
            }
        }
    }
    return state;
}

matrix_row_t matrix_get_row(uint8_t row) {
    return matrix[row];
}

#else
uint8_t matrix_scan(void) {
    static matrix_col_t debouncing_matrix[MATRIX_COLS];
    for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
        toggle_col(c);
        matrix_col_t state = read_rows();
        if (debouncing_matrix[c] != state) {
            debouncing_matrix[c] = state;
            debouncing_delay = DEBOUNCING_DELAY;
    for (uint8_t i = 0; i < MATRIX_COLS; i++) {
        select_row(i);
        wait_us(30);  // without this wait read unstable value.
        matrix_row_t rows = read_cols();
        if (matrix_reversed_debouncing[i] != rows) {
            matrix_reversed_debouncing[i] = rows;
            if (debouncing) {
                debug("bounce!: "); debug_hex(debouncing); debug("\n");
            }
            debouncing = DEBOUNCING_DELAY;
        }
        toggle_col(c);
        unselect_rows();
    }
    if (debouncing_delay >= 0) {
        dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
        --debouncing_delay;
        if (debouncing_delay >= 0) {
            wait_ms(1);
        }
        else {
            for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
                matrix[c] = debouncing_matrix[c];

    if (debouncing) {
        if (--debouncing) {
            wait_us(1);
        } else {
            for (uint8_t i = 0; i < MATRIX_COLS; i++) {
                matrix_reversed[i] = matrix_reversed_debouncing[i];
            }
        }
    }
    for (uint8_t y = 0; y < MATRIX_ROWS; y++) {
        matrix_row_t row = 0;
        for (uint8_t x = 0; x < MATRIX_COLS; x++) {
            row |= ((matrix_reversed[x] & (1<<y)) >> y) << x;
        }
        matrix[y] = row;
    }
#endif

    matrix_scan_quantum();

    return 1;
}

static void toggle_col(uint8_t col) {
    /* PINxn */
    _SFR_IO8((col_pins[col] >> 4)) = _BV(col_pins[col] & 0xF);
bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

static matrix_col_t read_rows(void) {
    matrix_col_t state = 0;
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        /* PINxn */
        if (!(_SFR_IO8((row_pins[r] >> 4)) & _BV(row_pins[r] & 0xF))) {
            state |= (matrix_col_t)1 << r;
        }
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print("\nr/c 0123456789ABCDEF\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        phex(row); print(": ");
        pbin_reverse16(matrix_get_row(row));
        print("\n");
    }
    return state;
}

matrix_row_t matrix_get_row(uint8_t row) {
    matrix_row_t state = 0;
    matrix_col_t mask = (matrix_col_t)1 << row;
    for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
        if (matrix[c] & mask) {
            state |= (matrix_row_t)1 << c;
        }
uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += bitpop16(matrix[i]);
    }
    return state;
    return count;
}

static void init_cols(void)
{
#if DIODE_DIRECTION == COL2ROW
    for(int x = 0; x < MATRIX_COLS; x++) {
        int pin = col_pins[x];
#else
    for(int x = 0; x < MATRIX_ROWS; x++) {
        int pin = row_pins[x];
#endif

bool matrix_is_modified(void) {
    if (debouncing_delay >= 0) return false;
    return true;
        _SFR_IO8((pin >> 4) + 1) &=  ~_BV(pin & 0xF);
        _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
    }
}

bool matrix_is_on(uint8_t row, uint8_t col) {
    return matrix_get_row(row) & (matrix_row_t)1 << col;
}
static matrix_row_t read_cols(void)
{
    matrix_row_t result = 0;

void matrix_print(void) {
    dprintln("Human-readable matrix state:");
    for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
        dprintf("State of row %X: %016b\n", r, bitrev16(matrix_get_row(r)));
#if DIODE_DIRECTION == COL2ROW
    for(int x = 0; x < MATRIX_COLS; x++) {     
        int pin = col_pins[x];
#else
    for(int x = 0; x < MATRIX_ROWS; x++) {
        int pin = row_pins[x];
#endif
        result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (SHIFTER << x);
    }
    return result;
}

uint8_t matrix_key_count(void) {
    uint8_t count = 0;
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        count += bitpop16(matrix_get_row(r));
static void unselect_rows(void)
{
#if DIODE_DIRECTION == COL2ROW
    for(int x = 0; x < MATRIX_ROWS; x++) { 
        int pin = row_pins[x];
#else
    for(int x = 0; x < MATRIX_COLS; x++) { 
        int pin = col_pins[x];
#endif
        _SFR_IO8((pin >> 4) + 1) &=  ~_BV(pin & 0xF);
        _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
    }
    return count;
}

static void select_row(uint8_t row)
{

#if DIODE_DIRECTION == COL2ROW
    int pin = row_pins[row];
#else
    int pin = col_pins[row];
#endif
    _SFR_IO8((pin >> 4) + 1) |=  _BV(pin & 0xF);
    _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF);
}

M tmk_core/common/avr/suspend.c => tmk_core/common/avr/suspend.c +4 -2
@@ 114,8 114,10 @@ bool suspend_wakeup_condition(void)
    matrix_power_up();
    matrix_scan();
    matrix_power_down();
    if (matrix_key_count()) return true;
    return false;
    for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
        if (matrix_get_row(r)) return true;
    }
     return false;
}

// run immediately after wakeup

M tmk_core/common/bootmagic.c => tmk_core/common/bootmagic.c +9 -7
@@ 106,13 106,15 @@ void bootmagic(void)
    }
}

static bool scan_keycode(uint8_t keycode) {
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
static bool scan_keycode(uint8_t keycode)
{
    for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
        matrix_row_t matrix_row = matrix_get_row(r);
        for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
            if (matrix_row & (matrix_row_t)1 << c) {
                keypos_t key = (keypos_t){ .row = r, .col = c };
                if (keycode == keymap_key_to_keycode(0, key)) return true;
        for (uint8_t c = 0; c < MATRIX_COLS; c++) {
            if (matrix_row & ((matrix_row_t)1<<c)) {
                if (keycode == keymap_key_to_keycode(0, (keypos_t){ .row = r, .col = c })) {
                    return true;
                }
            }
        }
    }


@@ 124,4 126,4 @@ bool bootmagic_scan_keycode(uint8_t keycode)
    if (!scan_keycode(BOOTMAGIC_KEY_SALT)) return false;

    return scan_keycode(keycode);
}
}
\ No newline at end of file

M tmk_core/common/keyboard.c => tmk_core/common/keyboard.c +62 -45
@@ 51,17 51,20 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#endif

#ifdef MATRIX_HAS_GHOST
static bool is_row_ghosting(uint8_t row){
    matrix_row_t state = matrix_get_row(row);
    /* no ghosting happens when only one key in the row is pressed */
    if (!(state - 1 & state)) return false;
    /* ghosting occurs when two keys in the same column are pressed */
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        if (r != row && matrix_get_row(r) & state) return true;
static bool has_ghost_in_row(uint8_t row)
{
    matrix_row_t matrix_row = matrix_get_row(row);
    // No ghost exists when less than 2 keys are down on the row
    if (((matrix_row - 1) & matrix_row) == 0)
        return false;

    // Ghost occurs when the row shares column line with other row
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        if (i != row && (matrix_get_row(i) & matrix_row))
            return true;
    }
    return false;
}

#endif

__attribute__ ((weak))


@@ 100,72 103,86 @@ void keyboard_init(void) {
#endif
}

/* does routine keyboard jobs */
void keyboard_task(void) {
    static uint8_t led_status;
/*
 * Do keyboard routine jobs: scan mantrix, light LEDs, ...
 * This is repeatedly called as fast as possible.
 */
void keyboard_task(void)
{
    static matrix_row_t matrix_prev[MATRIX_ROWS];
#ifdef MATRIX_HAS_GHOST
    static matrix_row_t matrix_ghost[MATRIX_ROWS];
#endif
    static uint8_t led_status = 0;
    matrix_row_t matrix_row = 0;
    matrix_row_t matrix_change = 0;

    matrix_scan();
    for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
        static matrix_row_t previous_matrix[MATRIX_ROWS];
        matrix_row_t state = matrix_get_row(r);
        matrix_row_t changes = state ^ previous_matrix[r];
        if (changes) {
    for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
        matrix_row = matrix_get_row(r);
        matrix_change = matrix_row ^ matrix_prev[r];
        if (matrix_change) {
#ifdef MATRIX_HAS_GHOST
            static matrix_row_t deghosting_matrix[MATRIX_ROWS];
            if (is_row_ghosting(r)) {
                /* debugs the deghosting mechanism */
                /* doesn't update previous_matrix until the ghosting has stopped
                 * in order to prevent the last key from being lost
            if (has_ghost_in_row(r)) {
                /* Keep track of whether ghosted status has changed for
                 * debugging. But don't update matrix_prev until un-ghosted, or
                 * the last key would be lost.
                 */
                if (debug_matrix && deghosting_matrix[r] != state) {
                if (debug_matrix && matrix_ghost[r] != matrix_row) {
                    matrix_print();
                }
                deghosting_matrix[r] = state;
                matrix_ghost[r] = matrix_row;
                continue;
            }
            deghosting_matrix[r] = state;
            matrix_ghost[r] = matrix_row;
#endif
            if (debug_matrix) matrix_print();
            for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
                matrix_row_t mask = (matrix_row_t)1 << c;
                if (changes & mask) {
                    keyevent_t event;
                    event.key = (keypos_t){ .row = r, .col = c };
                    event.pressed = state & mask;
                    /* the time should not be 0 */
                    event.time = timer_read() | 1;
                    action_exec(event);
                    /* records the processed key event */
                    previous_matrix[r] ^= mask;
                    /* processes one key event per call */
                    goto event_processed;
            for (uint8_t c = 0; c < MATRIX_COLS; c++) {
                if (matrix_change & ((matrix_row_t)1<<c)) {
                    action_exec((keyevent_t){
                        .key = (keypos_t){ .row = r, .col = c },
                        .pressed = (matrix_row & ((matrix_row_t)1<<c)),
                        .time = (timer_read() | 1) /* time should not be 0 */
                    });
                    // record a processed key
                    matrix_prev[r] ^= ((matrix_row_t)1<<c);
                    // process a key per task call
                    goto MATRIX_LOOP_END;
                }
            }
        }
    }
    /* sends tick events when the keyboard is idle */
    // call with pseudo tick event when no real key event.
    action_exec(TICK);
event_processed:

MATRIX_LOOP_END:

#ifdef MOUSEKEY_ENABLE
    /* repeats and accelerates the mouse keys */
    // mousekey repeat & acceleration
    mousekey_task();
#endif

#ifdef PS2_MOUSE_ENABLE
    ps2_mouse_task();
#endif

#ifdef SERIAL_MOUSE_ENABLE
    serial_mouse_task();
        serial_mouse_task();
#endif

#ifdef ADB_MOUSE_ENABLE
    adb_mouse_task();
        adb_mouse_task();
#endif
    /* updates the LEDs */

    // update LED
    if (led_status != host_keyboard_leds()) {
        led_status = host_keyboard_leds();
        keyboard_set_leds(led_status);
    }
}

void keyboard_set_leds(uint8_t leds) {
    if (debug_keyboard) dprintf("Keyboard LEDs state: %x\n", leds);
void keyboard_set_leds(uint8_t leds)
{
    if (debug_keyboard) { debug("keyboard_set_led: "); debug_hex8(leds); debug("\n"); }
    led_set(leds);
}

M tmk_core/common/matrix.h => tmk_core/common/matrix.h +23 -34
@@ 20,59 20,48 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include <stdint.h>
#include <stdbool.h>

#if MATRIX_COLS <= 8
typedef uint8_t matrix_row_t;
#elif MATRIX_COLS <= 16
typedef uint16_t matrix_row_t;
#elif MATRIX_COLS <= 32
typedef uint32_t matrix_row_t;

#if (MATRIX_COLS <= 8)
typedef  uint8_t    matrix_row_t;
#elif (MATRIX_COLS <= 16)
typedef  uint16_t   matrix_row_t;
#elif (MATRIX_COLS <= 32)
typedef  uint32_t   matrix_row_t;
#else
#   error "There are too many columns."
#error "MATRIX_COLS: invalid value"
#endif

#if DIODE_DIRECTION == ROW2COL
#   if MATRIX_ROWS <= 8
typedef uint8_t matrix_col_t;
#   elif MATRIX_ROWS <= 16
typedef uint16_t matrix_col_t;
#   elif MATRIX_ROWS <= 32
typedef uint32_t matrix_col_t;
#   else
#       error "There are too many rows."
#   endif
#endif
#define MATRIX_IS_ON(row, col)  (matrix_get_row(row) && (1<<col))

typedef struct {
    uint8_t input_addr:4;
    uint8_t bit:4;
} io_pin_t;

#ifdef __cplusplus
extern "C" {
#endif
/* counts the number of rows in the matrix */

/* number of matrix rows */
uint8_t matrix_rows(void);
/* counts the number of columns in the matrix */
/* number of matrix columns */
uint8_t matrix_cols(void);
/* sets up the matrix before matrix_init */
/* should be called at early stage of startup before matrix_init.(optional) */
void matrix_setup(void);
/* intializes the matrix */
/* intialize matrix for scaning. */
void matrix_init(void);
/* scans the entire matrix */
/* scan all key states on matrix */
uint8_t matrix_scan(void);
/* checks if the matrix has been modified */
/* whether modified from previous scan. used after matrix_scan. */
bool matrix_is_modified(void) __attribute__ ((deprecated));
/* checks if a key is pressed */
/* whether a swtich is on */
bool matrix_is_on(uint8_t row, uint8_t col);
/* inspects the state of a row in the matrix */
/* matrix state on row */
matrix_row_t matrix_get_row(uint8_t row);
/* prints the matrix for debugging */
/* print matrix for debug */
void matrix_print(void);
/* counts the total number of keys pressed */
uint8_t matrix_key_count(void);
/* controls power to the matrix */


/* power control */
void matrix_power_up(void);
void matrix_power_down(void);

/* executes code for Quantum */
void matrix_init_quantum(void);
void matrix_scan_quantum(void);