~ruther/qmk_firmware

8d5eacb7dd76bfd45444ceb1efa9a9f840173552 — Nick Brassel 3 years ago 7121a22
Add support for encoder mapping. (#13286)

M builddefs/generic_features.mk => builddefs/generic_features.mk +1 -0
@@ 25,6 25,7 @@ GENERIC_FEATURES = \
    DYNAMIC_KEYMAP \
    DYNAMIC_MACRO \
    ENCODER \
    ENCODER_MAP \
    GRAVE_ESC \
    HAPTIC \
    KEY_LOCK \

M builddefs/show_options.mk => builddefs/show_options.mk +1 -0
@@ 57,6 57,7 @@ OTHER_OPTION_NAMES = \
  HELIX ZINC \
  AUTOLOG_ENABLE \
  DEBUG_ENABLE \
  ENCODER_MAP_ENABLE \
  ENCODER_ENABLE_CUSTOM \
  GERMAN_ENABLE \
  HAPTIC_ENABLE \

M docs/feature_encoders.md => docs/feature_encoders.md +22 -1
@@ 67,9 67,30 @@ Additionally, if one side does not have an encoder, you can specify `{}` for the
#define ENCODER_RESOLUTIONS_RIGHT { 4 }
```

## Encoder map

Encoder mapping may be added to your `keymap.c`, which replicates the normal keyswitch layer handling functionality, but with encoders. Add this to your `rules.mk`:

```make
ENCODER_MAP_ENABLE = yes
```

Your `keymap.c` will then need an encoder mapping defined (for four layers and two encoders):

```c
#if defined(ENCODER_MAP_ENABLE)
const uint16_t PROGMEM encoder_map[][NUM_ENCODERS][2] = {
    [_BASE] =   { ENCODER_CCW_CW(KC_MS_WH_UP, KC_MS_WH_DOWN), ENCODER_CCW_CW(KC_VOLD, KC_VOLU)  },
    [_LOWER] =  { ENCODER_CCW_CW(RGB_HUD, RGB_HUI),           ENCODER_CCW_CW(RGB_SAD, RGB_SAI)  },
    [_RAISE] =  { ENCODER_CCW_CW(RGB_VAD, RGB_VAI),           ENCODER_CCW_CW(RGB_SPD, RGB_SPI)  },
    [_ADJUST] = { ENCODER_CCW_CW(RGB_RMOD, RGB_MOD),          ENCODER_CCW_CW(KC_RIGHT, KC_LEFT) },
};
#endif
```

## Callbacks

The callback functions can be inserted into your `<keyboard>.c`:
When not using `ENCODER_MAP_ENABLE = yes`, the callback functions can be inserted into your `<keyboard>.c`:

```c
bool encoder_update_kb(uint8_t index, bool clockwise) {

M docs/feature_swap_hands.md => docs/feature_swap_hands.md +13 -0
@@ 31,3 31,16 @@ Note that the array indices are reversed same as the matrix and the values are o
|`SH_OS`    |One shot swap hands: toggles while pressed or until next key press.      |

`SH_TT` swap-hands tap-toggle key is similar to [layer tap-toggle](feature_layers.md?id=switching-and-toggling-layers). Tapping repeatedly (5 taps by default) will toggle swap-hands on or off, like `SH_TG`. Tap-toggle count can be changed by defining a value for `TAPPING_TOGGLE`.

## Encoder Mapping

When using an encoder mapping, it's also able to handle swapping encoders between sides, too.

Encoder indexes are defined as left-to-right, and the extent of the array needs to match the number of encoders on the keyboard.

As an example, if a split keyboard has a single encoder per side, you can swap the order by using the following code in your keymap:
```c
#if defined(SWAP_HANDS_ENABLE) && defined(ENCODER_MAP_ENABLE)
const uint8_t PROGMEM encoder_hand_swap_config[NUM_ENCODERS] = { 1, 0 };
#endif
```

M keyboards/hnahkb/vn66/rules.mk => keyboards/hnahkb/vn66/rules.mk +1 -0
@@ 17,5 17,6 @@ BACKLIGHT_ENABLE = yes      # Enable keyboard backlight functionality
RGBLIGHT_ENABLE = yes       # Enable keyboard RGB underglow
AUDIO_ENABLE = no           # Audio output
ENCODER_ENABLE = yes
LTO_ENABLE = yes

LAYOUTS = 66_ansi 66_iso

M lib/python/qmk/cli/pytest.py => lib/python/qmk/cli/pytest.py +1 -2
@@ 12,8 12,7 @@ from milc import cli
def pytest(cli):
    """Run several linting/testing commands.
    """
    nose2 = cli.run(['nose2', '-v', '-t'
                     'lib/python', *cli.args.test], capture_output=False, stdin=DEVNULL)
    nose2 = cli.run(['nose2', '-v', '-t', 'lib/python', *cli.args.test], capture_output=False, stdin=DEVNULL)
    flake8 = cli.run(['flake8', 'lib/python'], capture_output=False, stdin=DEVNULL)

    return flake8.returncode | nose2.returncode

M quantum/action.c => quantum/action.c +53 -12
@@ 14,9 14,11 @@ GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/
#include <limits.h>
#include "host.h"
#include "keycode.h"
#include "keyboard.h"
#include "keymap.h"
#include "mousekey.h"
#include "programmable_button.h"
#include "command.h"


@@ 89,6 91,7 @@ void action_exec(keyevent_t event) {
    }

#ifdef SWAP_HANDS_ENABLE
    // Swap hands handles both keys and encoders, if ENCODER_MAP_ENABLE is defined.
    if (!IS_NOEVENT(event)) {
        process_hand_swap(&event);
    }


@@ 136,27 139,65 @@ void action_exec(keyevent_t event) {
}

#ifdef SWAP_HANDS_ENABLE
extern const keypos_t PROGMEM hand_swap_config[MATRIX_ROWS][MATRIX_COLS];
#    ifdef ENCODER_MAP_ENABLE
extern const uint8_t PROGMEM encoder_hand_swap_config[NUM_ENCODERS];
#    endif // ENCODER_MAP_ENABLE

bool swap_hands = false;
bool swap_held  = false;

bool should_swap_hands(size_t index, uint8_t *swap_state, bool pressed) {
    size_t  array_index = index / (CHAR_BIT);
    size_t  bit_index   = index % (CHAR_BIT);
    uint8_t bit_val     = 1 << bit_index;
    bool    do_swap     = pressed ? swap_hands : swap_state[array_index] & bit_val;
    return do_swap;
}

void set_swap_hands_state(size_t index, uint8_t *swap_state, bool on) {
    size_t  array_index = index / (CHAR_BIT);
    size_t  bit_index   = index % (CHAR_BIT);
    uint8_t bit_val     = 1 << bit_index;
    if (on) {
        swap_state[array_index] |= bit_val;
    } else {
        swap_state[array_index] &= ~bit_val;
    }
}

/** \brief Process Hand Swap
 *
 * FIXME: Needs documentation.
 */
void process_hand_swap(keyevent_t *event) {
    static swap_state_row_t swap_state[MATRIX_ROWS];

    keypos_t         pos     = event->key;
    swap_state_row_t col_bit = (swap_state_row_t)1 << pos.col;
    bool             do_swap = event->pressed ? swap_hands : swap_state[pos.row] & (col_bit);

    if (do_swap) {
        event->key.row = pgm_read_byte(&hand_swap_config[pos.row][pos.col].row);
        event->key.col = pgm_read_byte(&hand_swap_config[pos.row][pos.col].col);
        swap_state[pos.row] |= col_bit;
    } else {
        swap_state[pos.row] &= ~(col_bit);
    keypos_t pos = event->key;
    if (pos.row < MATRIX_ROWS && pos.col < MATRIX_COLS) {
        static uint8_t matrix_swap_state[((MATRIX_ROWS * MATRIX_COLS) + (CHAR_BIT)-1) / (CHAR_BIT)];
        size_t         index   = (size_t)(pos.row * MATRIX_COLS) + pos.col;
        bool           do_swap = should_swap_hands(index, matrix_swap_state, event->pressed);
        if (do_swap) {
            event->key.row = pgm_read_byte(&hand_swap_config[pos.row][pos.col].row);
            event->key.col = pgm_read_byte(&hand_swap_config[pos.row][pos.col].col);
            set_swap_hands_state(index, matrix_swap_state, true);
        } else {
            set_swap_hands_state(index, matrix_swap_state, false);
        }
    }
#    ifdef ENCODER_MAP_ENABLE
    else if (pos.row == KEYLOC_ENCODER_CW || pos.row == KEYLOC_ENCODER_CCW) {
        static uint8_t encoder_swap_state[((NUM_ENCODERS) + (CHAR_BIT)-1) / (CHAR_BIT)];
        size_t         index   = pos.col;
        bool           do_swap = should_swap_hands(index, encoder_swap_state, event->pressed);
        if (do_swap) {
            event->key.row = pos.row;
            event->key.col = pgm_read_byte(&encoder_hand_swap_config[pos.col]);
            set_swap_hands_state(index, encoder_swap_state, true);
        } else {
            set_swap_hands_state(index, encoder_swap_state, false);
        }
    }
#    endif // ENCODER_MAP_ENABLE
}
#endif


M quantum/action_layer.c => quantum/action_layer.c +52 -15
@@ 1,5 1,7 @@
#include <limits.h>
#include <stdint.h>
#include "keyboard.h"
#include "keymap.h"
#include "action.h"
#include "util.h"
#include "action_layer.h"


@@ 223,19 225,20 @@ void layer_debug(void) {
/** \brief source layer cache
 */

uint8_t source_layers_cache[(MATRIX_ROWS * MATRIX_COLS + 7) / 8][MAX_LAYER_BITS] = {{0}};
uint8_t source_layers_cache[((MATRIX_ROWS * MATRIX_COLS) + (CHAR_BIT)-1) / (CHAR_BIT)][MAX_LAYER_BITS] = {{0}};
#    ifdef ENCODER_MAP_ENABLE
uint8_t encoder_source_layers_cache[(NUM_ENCODERS + (CHAR_BIT)-1) / (CHAR_BIT)][MAX_LAYER_BITS] = {{0}};
#    endif // ENCODER_MAP_ENABLE

/** \brief update source layers cache
/** \brief update source layers cache impl
 *
 * Updates the cached keys when changing layers
 * Updates the supplied cache when changing layers
 */
void update_source_layers_cache(keypos_t key, uint8_t layer) {
    const uint8_t key_number  = key.col + (key.row * MATRIX_COLS);
    const uint8_t storage_row = key_number / 8;
    const uint8_t storage_bit = key_number % 8;

void update_source_layers_cache_impl(uint8_t layer, uint16_t entry_number, uint8_t cache[][MAX_LAYER_BITS]) {
    const uint16_t storage_idx = entry_number / (CHAR_BIT);
    const uint8_t  storage_bit = entry_number % (CHAR_BIT);
    for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
        source_layers_cache[storage_row][bit_number] ^= (-((layer & (1U << bit_number)) != 0) ^ source_layers_cache[storage_row][bit_number]) & (1U << storage_bit);
        cache[storage_idx][bit_number] ^= (-((layer & (1U << bit_number)) != 0) ^ cache[storage_idx][bit_number]) & (1U << storage_bit);
    }
}



@@ 243,18 246,52 @@ void update_source_layers_cache(keypos_t key, uint8_t layer) {
 *
 * reads the cached keys stored when the layer was changed
 */
uint8_t read_source_layers_cache(keypos_t key) {
    const uint8_t key_number  = key.col + (key.row * MATRIX_COLS);
    const uint8_t storage_row = key_number / 8;
    const uint8_t storage_bit = key_number % 8;
    uint8_t       layer       = 0;
uint8_t read_source_layers_cache_impl(uint16_t entry_number, uint8_t cache[][MAX_LAYER_BITS]) {
    const uint16_t storage_idx = entry_number / (CHAR_BIT);
    const uint8_t  storage_bit = entry_number % (CHAR_BIT);
    uint8_t        layer       = 0;

    for (uint8_t bit_number = 0; bit_number < MAX_LAYER_BITS; bit_number++) {
        layer |= ((source_layers_cache[storage_row][bit_number] & (1U << storage_bit)) != 0) << bit_number;
        layer |= ((cache[storage_idx][bit_number] & (1U << storage_bit)) != 0) << bit_number;
    }

    return layer;
}

/** \brief update encoder source layers cache
 *
 * Updates the cached encoders when changing layers
 */
void update_source_layers_cache(keypos_t key, uint8_t layer) {
    if (key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
        const uint16_t entry_number = (uint16_t)(key.row * MATRIX_COLS) + key.col;
        update_source_layers_cache_impl(layer, entry_number, source_layers_cache);
    }
#    ifdef ENCODER_MAP_ENABLE
    else if (key.row == KEYLOC_ENCODER_CW || key.row == KEYLOC_ENCODER_CCW) {
        const uint16_t entry_number = key.col;
        update_source_layers_cache_impl(layer, entry_number, encoder_source_layers_cache);
    }
#    endif // ENCODER_MAP_ENABLE
}

/** \brief read source layers cache
 *
 * reads the cached keys stored when the layer was changed
 */
uint8_t read_source_layers_cache(keypos_t key) {
    if (key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
        const uint16_t entry_number = (uint16_t)(key.row * MATRIX_COLS) + key.col;
        return read_source_layers_cache_impl(entry_number, source_layers_cache);
    }
#    ifdef ENCODER_MAP_ENABLE
    else if (key.row == KEYLOC_ENCODER_CW || key.row == KEYLOC_ENCODER_CCW) {
        const uint16_t entry_number = key.col;
        return read_source_layers_cache_impl(entry_number, encoder_source_layers_cache);
    }
#    endif // ENCODER_MAP_ENABLE
    return 0;
}
#endif

/** \brief Store or get action (FIXME: Needs better summary)

M quantum/dynamic_keymap.c => quantum/dynamic_keymap.c +46 -4
@@ 58,9 58,14 @@
#    endif
#endif

// Dynamic macro starts after dynamic keymaps
// Dynamic encoders starts after dynamic keymaps
#ifndef DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR
#    define DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
#endif

// Dynamic macro starts after dynamic encoders
#ifndef DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR
#    define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * MATRIX_ROWS * MATRIX_COLS * 2))
#    define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR (DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR + (DYNAMIC_KEYMAP_LAYER_COUNT * NUM_ENCODERS * 2 * 2))
#endif

// Sanity check that dynamic keymaps fit in available EEPROM


@@ 89,6 94,7 @@ void *dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t c
}

uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) {
    if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return KC_NO;
    void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
    // Big endian, so we can read/write EEPROM directly from host if we want
    uint16_t keycode = eeprom_read_byte(address) << 8;


@@ 97,12 103,36 @@ uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column) 
}

void dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode) {
    if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || row >= MATRIX_ROWS || column >= MATRIX_COLS) return;
    void *address = dynamic_keymap_key_to_eeprom_address(layer, row, column);
    // Big endian, so we can read/write EEPROM directly from host if we want
    eeprom_update_byte(address, (uint8_t)(keycode >> 8));
    eeprom_update_byte(address + 1, (uint8_t)(keycode & 0xFF));
}

#ifdef ENCODER_MAP_ENABLE
void *dynamic_keymap_encoder_to_eeprom_address(uint8_t layer, uint8_t encoder_id) {
    return ((void *)DYNAMIC_KEYMAP_ENCODER_EEPROM_ADDR) + (layer * NUM_ENCODERS * 2 * 2) + (encoder_id * 2 * 2);
}

uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise) {
    if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return KC_NO;
    void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
    // Big endian, so we can read/write EEPROM directly from host if we want
    uint16_t keycode = ((uint16_t)eeprom_read_byte(address + (clockwise ? 0 : 2))) << 8;
    keycode |= eeprom_read_byte(address + (clockwise ? 0 : 2) + 1);
    return keycode;
}

void dynamic_keymap_set_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise, uint16_t keycode) {
    if (layer >= DYNAMIC_KEYMAP_LAYER_COUNT || encoder_id >= NUM_ENCODERS) return;
    void *address = dynamic_keymap_encoder_to_eeprom_address(layer, encoder_id);
    // Big endian, so we can read/write EEPROM directly from host if we want
    eeprom_update_byte(address + (clockwise ? 0 : 2), (uint8_t)(keycode >> 8));
    eeprom_update_byte(address + (clockwise ? 0 : 2) + 1, (uint8_t)(keycode & 0xFF));
}
#endif // ENCODER_MAP_ENABLE

void dynamic_keymap_reset(void) {
    // Reset the keymaps in EEPROM to what is in flash.
    // All keyboards using dynamic keymaps should define a layout


@@ 113,6 143,12 @@ void dynamic_keymap_reset(void) {
                dynamic_keymap_set_keycode(layer, row, column, pgm_read_word(&keymaps[layer][row][column]));
            }
        }
#ifdef ENCODER_MAP_ENABLE
        for (int encoder = 0; encoder < NUM_ENCODERS; encoder++) {
            dynamic_keymap_set_encoder(layer, encoder, true, pgm_read_word(&encoder_map[layer][encoder][0]));
            dynamic_keymap_set_encoder(layer, encoder, false, pgm_read_word(&encoder_map[layer][encoder][1]));
        }
#endif // ENCODER_MAP_ENABLE
    }
}



@@ 148,9 184,15 @@ void dynamic_keymap_set_buffer(uint16_t offset, uint16_t size, uint8_t *data) {
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
    if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
        return dynamic_keymap_get_keycode(layer, key.row, key.col);
    } else {
        return KC_NO;
    }
#ifdef ENCODER_MAP_ENABLE
    else if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row == KEYLOC_ENCODER_CW && key.col < NUM_ENCODERS) {
        return dynamic_keymap_get_encoder(layer, key.col, true);
    } else if (layer < DYNAMIC_KEYMAP_LAYER_COUNT && key.row == KEYLOC_ENCODER_CCW && key.col < NUM_ENCODERS) {
        return dynamic_keymap_get_encoder(layer, key.col, false);
    }
#endif // ENCODER_MAP_ENABLE
    return KC_NO;
}

uint8_t dynamic_keymap_macro_get_count(void) {

M quantum/dynamic_keymap.h => quantum/dynamic_keymap.h +5 -1
@@ 22,7 22,11 @@ uint8_t  dynamic_keymap_get_layer_count(void);
void *   dynamic_keymap_key_to_eeprom_address(uint8_t layer, uint8_t row, uint8_t column);
uint16_t dynamic_keymap_get_keycode(uint8_t layer, uint8_t row, uint8_t column);
void     dynamic_keymap_set_keycode(uint8_t layer, uint8_t row, uint8_t column, uint16_t keycode);
void     dynamic_keymap_reset(void);
#ifdef ENCODER_MAP_ENABLE
uint16_t dynamic_keymap_get_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise);
void     dynamic_keymap_set_encoder(uint8_t layer, uint8_t encoder_id, bool clockwise, uint16_t keycode);
#endif // ENCODER_MAP_ENABLE
void dynamic_keymap_reset(void);
// These get/set the keycodes as stored in the EEPROM buffer
// Data is big-endian 16-bit values (the keycodes)
// Order is by layer/row/column

M quantum/encoder.c => quantum/encoder.c +30 -0
@@ 23,6 23,10 @@
// for memcpy
#include <string.h>

#ifndef ENCODER_MAP_KEY_DELAY
#    define ENCODER_MAP_KEY_DELAY 2
#endif

#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
#    define ENCODER_RESOLUTION 4
#endif


@@ 135,6 139,16 @@ void encoder_init(void) {
    }
}

#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
    // The delays below cater for Windows and its wonderful requirements.
    action_exec(clockwise ? ENCODER_CW_EVENT(index, true) : ENCODER_CCW_EVENT(index, true));
    wait_ms(ENCODER_MAP_KEY_DELAY);
    action_exec(clockwise ? ENCODER_CW_EVENT(index, false) : ENCODER_CCW_EVENT(index, false));
    wait_ms(ENCODER_MAP_KEY_DELAY);
}
#endif // ENCODER_MAP_ENABLE

static bool encoder_update(uint8_t index, uint8_t state) {
    bool    changed = false;
    uint8_t i       = index;


@@ 152,12 166,20 @@ static bool encoder_update(uint8_t index, uint8_t state) {
    if (encoder_pulses[i] >= resolution) {
        encoder_value[index]++;
        changed = true;
#ifdef ENCODER_MAP_ENABLE
        encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#else  // ENCODER_MAP_ENABLE
        encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
    }
    if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
        encoder_value[index]--;
        changed = true;
#ifdef ENCODER_MAP_ENABLE
        encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#else  // ENCODER_MAP_ENABLE
        encoder_update_kb(index, ENCODER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
    }
    encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS


@@ 197,13 219,21 @@ void encoder_update_raw(uint8_t *slave_state) {
            delta--;
            encoder_value[index]++;
            changed = true;
#    ifdef ENCODER_MAP_ENABLE
            encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#    else  // ENCODER_MAP_ENABLE
            encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#    endif // ENCODER_MAP_ENABLE
        }
        while (delta < 0) {
            delta++;
            encoder_value[index]--;
            changed = true;
#    ifdef ENCODER_MAP_ENABLE
            encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#    else  // ENCODER_MAP_ENABLE
            encoder_update_kb(index, ENCODER_CLOCKWISE);
#    endif // ENCODER_MAP_ENABLE
        }
    }


M quantum/encoder.h => quantum/encoder.h +6 -0
@@ 55,3 55,9 @@ void encoder_update_raw(uint8_t* slave_state);
#endif // NUM_ENCODERS

#define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)

#ifdef ENCODER_MAP_ENABLE
#    define ENCODER_CCW_CW(ccw, cw) \
        { (cw), (ccw) }
extern const uint16_t encoder_map[][NUM_ENCODERS][2];
#endif // ENCODER_MAP_ENABLE

M quantum/keyboard.h => quantum/keyboard.h +29 -7
@@ 40,25 40,47 @@ typedef struct {
/* equivalent test of keypos_t */
#define KEYEQ(keya, keyb) ((keya).row == (keyb).row && (keya).col == (keyb).col)

/* special keypos_t entries */
#define KEYLOC_TICK 255
#define KEYLOC_COMBO 254
#define KEYLOC_ENCODER_CW 253
#define KEYLOC_ENCODER_CCW 252

/* Rules for No Event:
 * 1) (time == 0) to handle (keyevent_t){} as empty event
 * 2) Matrix(255, 255) to make TICK event available
 */
static inline bool IS_NOEVENT(keyevent_t event) {
    return event.time == 0 || (event.key.row == 255 && event.key.col == 255);
    return event.time == 0 || (event.key.row == KEYLOC_TICK && event.key.col == KEYLOC_TICK);
}
static inline bool IS_KEYEVENT(keyevent_t event) {
    return event.key.row < MATRIX_ROWS && event.key.col < MATRIX_COLS;
}
static inline bool IS_COMBOEVENT(keyevent_t event) {
    return event.key.row == KEYLOC_COMBO;
}
static inline bool IS_ENCODEREVENT(keyevent_t event) {
    return event.key.row == KEYLOC_ENCODER_CW || event.key.row == KEYLOC_ENCODER_CCW;
}
static inline bool IS_PRESSED(keyevent_t event) {
    return (!IS_NOEVENT(event) && event.pressed);
    return !IS_NOEVENT(event) && event.pressed;
}
static inline bool IS_RELEASED(keyevent_t event) {
    return (!IS_NOEVENT(event) && !event.pressed);
    return !IS_NOEVENT(event) && !event.pressed;
}

/* Common keyevent object factory */
#define MAKE_KEYPOS(row_num, col_num) ((keypos_t){.row = (row_num), .col = (col_num)})
#define MAKE_KEYEVENT(row_num, col_num, press) ((keyevent_t){.key = MAKE_KEYPOS((row_num), (col_num)), .pressed = (press), .time = (timer_read() | 1)})

/* Tick event */
#define TICK                                                                                    \
    (keyevent_t) {                                                                              \
        .key = (keypos_t){.row = 255, .col = 255}, .pressed = false, .time = (timer_read() | 1) \
    }
#define TICK MAKE_KEYEVENT(KEYLOC_TICK, KEYLOC_TICK, false)

#ifdef ENCODER_MAP_ENABLE
/* Encoder events */
#    define ENCODER_CW_EVENT(enc_id, press) MAKE_KEYEVENT(KEYLOC_ENCODER_CW, (enc_id), (press))
#    define ENCODER_CCW_EVENT(enc_id, press) MAKE_KEYEVENT(KEYLOC_ENCODER_CCW, (enc_id), (press))
#endif // ENCODER_MAP_ENABLE

/* it runs once at early stage of startup before keyboard_init. */
void keyboard_setup(void);

M quantum/keymap.h => quantum/keymap.h +6 -0
@@ 32,6 32,7 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
// #include "print.h"
#include "debug.h"
#include "keycode_config.h"
#include "gpio.h" // for pin_t

// ChibiOS uses RESET in its FlagStatus enumeration
// Therefore define it as QK_BOOTLOADER here, to avoid name collision


@@ 49,3 50,8 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key);

extern const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS];

#ifdef ENCODER_MAP_ENABLE
// Ensure we have a forward declaration for the encoder map
#    include "encoder.h"
#endif

M quantum/keymap_common.c => quantum/keymap_common.c +11 -2
@@ 148,6 148,15 @@ action_t action_for_keycode(uint16_t keycode) {

// translates key to keycode
__attribute__((weak)) uint16_t keymap_key_to_keycode(uint8_t layer, keypos_t key) {
    // Read entire word (16bits)
    return pgm_read_word(&keymaps[(layer)][(key.row)][(key.col)]);
    if (key.row < MATRIX_ROWS && key.col < MATRIX_COLS) {
        return pgm_read_word(&keymaps[layer][key.row][key.col]);
    }
#ifdef ENCODER_MAP_ENABLE
    else if (key.row == KEYLOC_ENCODER_CW && key.col < NUM_ENCODERS) {
        return pgm_read_word(&encoder_map[layer][key.col][0]);
    } else if (key.row == KEYLOC_ENCODER_CCW && key.col < NUM_ENCODERS) {
        return pgm_read_word(&encoder_map[layer][key.col][1]);
    }
#endif // ENCODER_MAP_ENABLE
    return KC_NO;
}

M quantum/process_keycode/process_combo.c => quantum/process_keycode/process_combo.c +2 -9
@@ 88,8 88,6 @@ static queued_combo_t combo_buffer[COMBO_BUFFER_LENGTH];

#define INCREMENT_MOD(i) i = (i + 1) % COMBO_BUFFER_LENGTH

#define COMBO_KEY_POS ((keypos_t){.col = 254, .row = 254})

#ifndef EXTRA_SHORT_COMBOS
/* flags are their own elements in combo_t struct. */
#    define COMBO_ACTIVE(combo) (combo->active)


@@ 140,12 138,7 @@ static queued_combo_t combo_buffer[COMBO_BUFFER_LENGTH];
static inline void release_combo(uint16_t combo_index, combo_t *combo) {
    if (combo->keycode) {
        keyrecord_t record = {
            .event =
                {
                    .key     = COMBO_KEY_POS,
                    .time    = timer_read() | 1,
                    .pressed = false,
                },
            .event   = MAKE_KEYEVENT(KEYLOC_COMBO, KEYLOC_COMBO, false),
            .keycode = combo->keycode,
        };
#ifndef NO_ACTION_TAPPING


@@ 325,7 318,7 @@ void apply_combo(uint16_t combo_index, combo_t *combo) {
        if (ALL_COMBO_KEYS_ARE_DOWN(state, key_count)) {
            // this in the end executes the combo when the key_buffer is dumped.
            record->keycode   = combo->keycode;
            record->event.key = COMBO_KEY_POS;
            record->event.key = MAKE_KEYPOS(KEYLOC_COMBO, KEYLOC_COMBO);

            qrecord->combo_index = combo_index;
            ACTIVATE_COMBO(combo);