~ruther/qmk_firmware

7c186ebb974b4bbadbb74a7610bab5d2f66d030e — Michael Stapelberg 3 years ago 1ed5c48
Revert "core: make the full 4096 bytes of EEPROM work on Teensy 3.6 (#12947)" (#15695)

This reverts commit 7f8faa429e0c0662cec34a7d60e33ca58333d6d7.

related to https://github.com/qmk/qmk_firmware/issues/15521
1 files changed, 14 insertions(+), 199 deletions(-)

M platforms/chibios/eeprom_teensy.c
M platforms/chibios/eeprom_teensy.c => platforms/chibios/eeprom_teensy.c +14 -199
@@ 39,126 39,7 @@
 * SOFTWARE.
 */

#define SMC_PMSTAT_RUN ((uint8_t)0x01)
#define SMC_PMSTAT_HSRUN ((uint8_t)0x80)

#define F_CPU KINETIS_SYSCLK_FREQUENCY

static inline int kinetis_hsrun_disable(void) {
#if defined(MK66F18)
    if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) {
// First, reduce the CPU clock speed, but do not change
// the peripheral speed (F_BUS).  Serial1 & Serial2 baud
// rates will be impacted, but most other peripherals
// will continue functioning at the same speed.
#    if F_CPU == 256000000 && F_BUS == 64000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // TODO: TEST
#    elif F_CPU == 256000000 && F_BUS == 128000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // TODO: TEST
#    elif F_CPU == 240000000 && F_BUS == 60000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
#    elif F_CPU == 240000000 && F_BUS == 80000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
#    elif F_CPU == 240000000 && F_BUS == 120000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
#    elif F_CPU == 216000000 && F_BUS == 54000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
#    elif F_CPU == 216000000 && F_BUS == 72000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
#    elif F_CPU == 216000000 && F_BUS == 108000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
#    elif F_CPU == 192000000 && F_BUS == 48000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7);  // ok
#    elif F_CPU == 192000000 && F_BUS == 64000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
#    elif F_CPU == 192000000 && F_BUS == 96000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
#    elif F_CPU == 180000000 && F_BUS == 60000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8);  // ok
#    elif F_CPU == 180000000 && F_BUS == 90000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7);  // ok
#    elif F_CPU == 168000000 && F_BUS == 56000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5);  // ok
#    elif F_CPU == 144000000 && F_BUS == 48000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5);  // ok
#    elif F_CPU == 144000000 && F_BUS == 72000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5);  // ok
#    elif F_CPU == 120000000 && F_BUS == 60000000
        SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
#        if defined(MK66F18)
                       SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
#        endif
                       SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
#    else
        return 0;
#    endif
        // Then turn off HSRUN mode
        SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0);
        while (SMC->PMSTAT == SMC_PMSTAT_HSRUN)
            ;  // wait
        return 1;
    }
#endif
    return 0;
}

static inline int kinetis_hsrun_enable(void) {
#if defined(MK66F18)
    if (SMC->PMSTAT == SMC_PMSTAT_RUN) {
        // Turn HSRUN mode on
        SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3);
        while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) {
            ;
        }  // wait
// Then configure clock for full speed
#    if F_CPU == 256000000 && F_BUS == 64000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
#    elif F_CPU == 256000000 && F_BUS == 128000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
#    elif F_CPU == 240000000 && F_BUS == 60000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
#    elif F_CPU == 240000000 && F_BUS == 80000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
#    elif F_CPU == 240000000 && F_BUS == 120000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
#    elif F_CPU == 216000000 && F_BUS == 54000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
#    elif F_CPU == 216000000 && F_BUS == 72000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
#    elif F_CPU == 216000000 && F_BUS == 108000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
#    elif F_CPU == 192000000 && F_BUS == 48000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
#    elif F_CPU == 192000000 && F_BUS == 64000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
#    elif F_CPU == 192000000 && F_BUS == 96000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
#    elif F_CPU == 180000000 && F_BUS == 60000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
#    elif F_CPU == 180000000 && F_BUS == 90000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
#    elif F_CPU == 168000000 && F_BUS == 56000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
#    elif F_CPU == 144000000 && F_BUS == 48000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
#    elif F_CPU == 144000000 && F_BUS == 72000000
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
#    elif F_CPU == 120000000 && F_BUS == 60000000
        SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
#        if defined(MK66F18)
                       SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
#        endif
                       SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
#    else
        return 0;
#    endif
        return 1;
    }
#endif
    return 0;
}

#if defined(K20x) || defined(MK66F18) /* chip selection */
#if defined(K20x) /* chip selection */
/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */

// The EEPROM is really RAM with a hardware-based backup system to


@@ 188,34 69,22 @@ static inline int kinetis_hsrun_enable(void) {
//
#    define HANDLE_UNALIGNED_WRITES

#    if defined(K20x)
#        define EEPROM_MAX 2048
#        define EEPARTITION 0x03  // all 32K dataflash for EEPROM, none for Data
#        define EEESPLIT 0x30     // must be 0x30 on these chips
#    elif defined(MK66F18)
#        define EEPROM_MAX 4096
#        define EEPARTITION 0x05  // 128K dataflash for EEPROM, 128K for Data
#        define EEESPLIT 0x10     // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal
#    endif

// Minimum EEPROM Endurance
// ------------------------
#    if (EEPROM_SIZE == 4096)
#        define EEESIZE 0x02
#    elif (EEPROM_SIZE == 2048)  // 35000 writes/byte or 70000 writes/word
#        define EEESIZE 0x03
#    if (EEPROM_SIZE == 2048)  // 35000 writes/byte or 70000 writes/word
#        define EEESIZE 0x33
#    elif (EEPROM_SIZE == 1024)  // 75000 writes/byte or 150000 writes/word
#        define EEESIZE 0x04
#        define EEESIZE 0x34
#    elif (EEPROM_SIZE == 512)  // 155000 writes/byte or 310000 writes/word
#        define EEESIZE 0x05
#        define EEESIZE 0x35
#    elif (EEPROM_SIZE == 256)  // 315000 writes/byte or 630000 writes/word
#        define EEESIZE 0x06
#        define EEESIZE 0x36
#    elif (EEPROM_SIZE == 128)  // 635000 writes/byte or 1270000 writes/word
#        define EEESIZE 0x07
#        define EEESIZE 0x37
#    elif (EEPROM_SIZE == 64)  // 1275000 writes/byte or 2550000 writes/word
#        define EEESIZE 0x08
#        define EEESIZE 0x38
#    elif (EEPROM_SIZE == 32)  // 2555000 writes/byte or 5110000 writes/word
#        define EEESIZE 0x09
#        define EEESIZE 0x39
#    endif

/** \brief eeprom initialization


@@ 228,21 97,15 @@ void eeprom_initialize(void) {
    uint8_t  status;

    if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
        uint8_t stat = FTFL->FSTAT & 0x70;
        if (stat) FTFL->FSTAT = stat;

        // FlexRAM is configured as traditional RAM
        // We need to reconfigure for EEPROM usage
        kinetis_hsrun_disable();
        FTFL->FCCOB0 = 0x80;  // PGMPART = Program Partition Command
        FTFL->FCCOB3 = 0;
        FTFL->FCCOB4 = EEESPLIT | EEESIZE;
        FTFL->FCCOB5 = EEPARTITION;
        FTFL->FCCOB0 = 0x80;     // PGMPART = Program Partition Command
        FTFL->FCCOB4 = EEESIZE;  // EEPROM Size
        FTFL->FCCOB5 = 0x03;     // 0K for Dataflash, 32K for EEPROM backup
        __disable_irq();
        // do_flash_cmd() must execute from RAM.  Luckily the C syntax is simple...
        (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
        __enable_irq();
        kinetis_hsrun_enable();
        status = FTFL->FSTAT;
        if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
            FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));


@@ 251,11 114,11 @@ void eeprom_initialize(void) {
    }
    // wait for eeprom to become ready (is this really necessary?)
    while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
        if (++count > 200000) break;
        if (++count > 20000) break;
    }
}

#    define FlexRAM ((volatile uint8_t *)0x14000000)
#    define FlexRAM ((uint8_t *)0x14000000)

/** \brief eeprom read byte
 *


@@ 332,12 195,8 @@ void eeprom_write_byte(uint8_t *addr, uint8_t value) {
    if (offset >= EEPROM_SIZE) return;
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
    if (FlexRAM[offset] != value) {
        kinetis_hsrun_disable();
        uint8_t stat = FTFL->FSTAT & 0x70;
        if (stat) FTFL->FSTAT = stat;
        FlexRAM[offset] = value;
        flexram_wait();
        kinetis_hsrun_enable();
    }
}



@@ 354,30 213,18 @@ void eeprom_write_word(uint16_t *addr, uint16_t value) {
    if ((offset & 1) == 0) {
#    endif
        if (*(uint16_t *)(&FlexRAM[offset]) != value) {
            kinetis_hsrun_disable();
            uint8_t stat = FTFL->FSTAT & 0x70;
            if (stat) FTFL->FSTAT = stat;
            *(uint16_t *)(&FlexRAM[offset]) = value;
            flexram_wait();
            kinetis_hsrun_enable();
        }
#    ifdef HANDLE_UNALIGNED_WRITES
    } else {
        if (FlexRAM[offset] != value) {
            kinetis_hsrun_disable();
            uint8_t stat = FTFL->FSTAT & 0x70;
            if (stat) FTFL->FSTAT = stat;
            FlexRAM[offset] = value;
            flexram_wait();
            kinetis_hsrun_enable();
        }
        if (FlexRAM[offset + 1] != (value >> 8)) {
            kinetis_hsrun_disable();
            uint8_t stat = FTFL->FSTAT & 0x70;
            if (stat) FTFL->FSTAT = stat;
            FlexRAM[offset + 1] = value >> 8;
            flexram_wait();
            kinetis_hsrun_enable();
        }
    }
#    endif


@@ 397,57 244,33 @@ void eeprom_write_dword(uint32_t *addr, uint32_t value) {
        case 0:
#    endif
            if (*(uint32_t *)(&FlexRAM[offset]) != value) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint32_t *)(&FlexRAM[offset]) = value;
                flexram_wait();
                kinetis_hsrun_enable();
            }
            return;
#    ifdef HANDLE_UNALIGNED_WRITES
        case 2:
            if (*(uint16_t *)(&FlexRAM[offset]) != value) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint16_t *)(&FlexRAM[offset]) = value;
                flexram_wait();
                kinetis_hsrun_enable();
            }
            if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
                flexram_wait();
                kinetis_hsrun_enable();
            }
            return;
        default:
            if (FlexRAM[offset] != value) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                FlexRAM[offset] = value;
                flexram_wait();
                kinetis_hsrun_enable();
            }
            if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
                flexram_wait();
                kinetis_hsrun_enable();
            }
            if (FlexRAM[offset + 3] != (value >> 24)) {
                kinetis_hsrun_disable();
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                FlexRAM[offset + 3] = value >> 24;
                flexram_wait();
                kinetis_hsrun_enable();
            }
    }
#    endif


@@ 465,7 288,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
    if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
    if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
    if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
    kinetis_hsrun_disable();
    while (len > 0) {
        uint32_t lsb = offset & 3;
        if (lsb == 0 && len >= 4) {


@@ 476,8 298,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
            val32 |= (*src++ << 16);
            val32 |= (*src++ << 24);
            if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint32_t *)(&FlexRAM[offset]) = val32;
                flexram_wait();
            }


@@ 489,8 309,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
            val16 = *src++;
            val16 |= (*src++ << 8);
            if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                *(uint16_t *)(&FlexRAM[offset]) = val16;
                flexram_wait();
            }


@@ 500,8 318,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
            // write 8 bits
            uint8_t val8 = *src++;
            if (FlexRAM[offset] != val8) {
                uint8_t stat = FTFL->FSTAT & 0x70;
                if (stat) FTFL->FSTAT = stat;
                FlexRAM[offset] = val8;
                flexram_wait();
            }


@@ 509,7 325,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
            len--;
        }
    }
    kinetis_hsrun_enable();
}

/*