~ruther/qmk_firmware

7595f538562437fa6d13ede5be7a5a4b5d582c6b — yfuku 4 years ago 8af767c
refactor SPLIT_KEYBOARD, OLED_DRIVER_ENABLE (#10405)

33 files changed, 236 insertions(+), 2539 deletions(-)

M keyboards/claw44/claw44.c
M keyboards/claw44/config.h
D keyboards/claw44/i2c.c
D keyboards/claw44/i2c.h
M keyboards/claw44/keymaps/default/config.h
M keyboards/claw44/keymaps/default/keymap.c
R keyboards/claw44/keymaps/{yfuku => oled}/config.h
A keyboards/claw44/keymaps/oled/keymap.c
A keyboards/claw44/keymaps/oled/rules.mk
D keyboards/claw44/keymaps/yfuku/keymap.c
M keyboards/claw44/lib/glcdfont.c
D keyboards/claw44/lib/host_led_state_reader.c
D keyboards/claw44/lib/keylogger.c
D keyboards/claw44/lib/layer_state_reader.c
D keyboards/claw44/lib/logo_reader.c
D keyboards/claw44/lib/mode_icon_reader.c
D keyboards/claw44/lib/rgb_state_reader.c
D keyboards/claw44/lib/timelogger.c
M keyboards/claw44/rev1/config.h
D keyboards/claw44/rev1/matrix.c
M keyboards/claw44/rev1/rev1.c
M keyboards/claw44/rev1/rev1.h
M keyboards/claw44/rev1/rules.mk
D keyboards/claw44/rev1/serial_config.h
D keyboards/claw44/rev1/split_scomm.c
D keyboards/claw44/rev1/split_scomm.h
D keyboards/claw44/rev1/split_util.c
D keyboards/claw44/rev1/split_util.h
M keyboards/claw44/rules.mk
D keyboards/claw44/serial.c
D keyboards/claw44/serial.h
D keyboards/claw44/ssd1306.c
D keyboards/claw44/ssd1306.h
M keyboards/claw44/claw44.c => keyboards/claw44/claw44.c +0 -9
@@ 1,10 1,1 @@
#include "claw44.h"
#include "ssd1306.h"

bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
#ifdef SSD1306OLED
  return process_record_gfx(keycode,record) && process_record_user(keycode, record);
#else
  return process_record_user(keycode, record);
#endif
}

M keyboards/claw44/config.h => keyboards/claw44/config.h +0 -4
@@ 19,10 19,6 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#pragma once

#include "config_common.h"
#include <serial_config.h>

#define USE_I2C
#define USE_SERIAL

#define NO_ACTION_MACRO
#define NO_ACTION_FUNCTION

D keyboards/claw44/i2c.c => keyboards/claw44/i2c.c +0 -162
@@ 1,162 0,0 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"

#ifdef USE_I2C

// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK)  =>  # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8

#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)

volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;

// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
  uint16_t lim = 0;
  while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
    lim++;

  // easier way, but will wait slightly longer
  // _delay_us(100);
}

// Setup twi to run at 100kHz or 400kHz (see ./i2c.h SCL_CLOCK)
void i2c_master_init(void) {
  // no prescaler
  TWSR = 0;
  // Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
  // Check datasheets for more info.
  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}

// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
//          1 => error
uint8_t i2c_master_start(uint8_t address) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

  i2c_delay();

  // check that we started successfully
  if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
    return 1;

  TWDR = address;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
    return 1; // slave did not acknowledge
  else
    return 0; // success
}


// Finish the i2c transaction.
void i2c_master_stop(void) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t lim = 0;
  while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
    lim++;
}

// Write one byte to the i2c slave.
// returns 0 => slave ACK
//         1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  // check if the slave acknowledged us
  return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}

// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);

  i2c_delay();
  return TWDR;
}

void i2c_reset_state(void) {
  TWCR = 0;
}

void i2c_slave_init(uint8_t address) {
  TWAR = address << 0; // slave i2c address
  // TWEN  - twi enable
  // TWEA  - enable address acknowledgement
  // TWINT - twi interrupt flag
  // TWIE  - enable the twi interrupt
  TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}

ISR(TWI_vect);

ISR(TWI_vect) {
  uint8_t ack = 1;
  switch(TW_STATUS) {
    case TW_SR_SLA_ACK:
      // this device has been addressed as a slave receiver
      slave_has_register_set = false;
      break;

    case TW_SR_DATA_ACK:
      // this device has received data as a slave receiver
      // The first byte that we receive in this transaction sets the location
      // of the read/write location of the slaves memory that it exposes over
      // i2c.  After that, bytes will be written at slave_buffer_pos, incrementing
      // slave_buffer_pos after each write.
      if(!slave_has_register_set) {
        slave_buffer_pos = TWDR;
        // don't acknowledge the master if this memory loctaion is out of bounds
        if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
          ack = 0;
          slave_buffer_pos = 0;
        }
        slave_has_register_set = true;
      } else {
        i2c_slave_buffer[slave_buffer_pos] = TWDR;
        BUFFER_POS_INC();
      }
      break;

    case TW_ST_SLA_ACK:
    case TW_ST_DATA_ACK:
      // master has addressed this device as a slave transmitter and is
      // requesting data.
      TWDR = i2c_slave_buffer[slave_buffer_pos];
      BUFFER_POS_INC();
      break;

    case TW_BUS_ERROR: // something went wrong, reset twi state
      TWCR = 0;
    default:
      break;
  }
  // Reset everything, so we are ready for the next TWI interrupt
  TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

D keyboards/claw44/i2c.h => keyboards/claw44/i2c.h +0 -46
@@ 1,46 0,0 @@
#pragma once

#include <stdint.h>

#ifndef F_CPU
#define F_CPU 16000000UL
#endif

#define I2C_READ 1
#define I2C_WRITE 0

#define I2C_ACK 1
#define I2C_NACK 0

#define SLAVE_BUFFER_SIZE 0x10

// i2c SCL clock frequency 400kHz
#define SCL_CLOCK  400000L

extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);


static inline unsigned char i2c_start_read(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_READ);
}

static inline unsigned char i2c_start_write(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_WRITE);
}

// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);

#define i2c_read(ack)  (ack) ? i2c_readAck() : i2c_readNak();

M keyboards/claw44/keymaps/default/config.h => keyboards/claw44/keymaps/default/config.h +0 -12
@@ 20,16 20,4 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.

#pragma once

//#define USE_MATRIX_I2C

/* Select hand configuration */

#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS

#define SSD1306OLED

#define USE_SERIAL_PD2

#define TAPPING_TERM 200

M keyboards/claw44/keymaps/default/keymap.c => keyboards/claw44/keymaps/default/keymap.c +45 -154
@@ 1,168 1,59 @@
#include QMK_KEYBOARD_H
#ifdef PROTOCOL_LUFA
  #include "lufa.h"
  #include "split_util.h"
#endif
#ifdef SSD1306OLED
  #include "ssd1306.h"
#endif


extern uint8_t is_master;

// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.

enum custom_keycodes {
  QWERTY = SAFE_RANGE,
  LOWER,
  RAISE
};

enum macro_keycodes {
  KC_SAMPLEMACRO,
enum layer_number {
    _QWERTY = 0,
    _RAISE,
    _LOWER,
};

#define KC_ KC_TRNS
#define KC_RST RESET
#define KC_L_SPC LT(_LOWER, KC_SPC) // lower
#define KC_R_ENT LT(_RAISE, KC_ENT) // raise
#define KC_G_JA LGUI_T(KC_LANG1) // cmd or win
#define KC_G_EN LGUI_T(KC_LANG2) // cmd or win
#define KC_C_BS LCTL_T(KC_BSPC) // ctrl
#define KC_A_DEL ALT_T(KC_DEL) // alt
#define KC_L_SPC LT(_LOWER, KC_SPC)  // lower
#define KC_R_ENT LT(_RAISE, KC_ENT)  // raise
#define KC_G_JA LGUI_T(KC_LANG1)     // cmd or win
#define KC_G_EN LGUI_T(KC_LANG2)     // cmd or win
#define KC_C_BS LCTL_T(KC_BSPC)      // ctrl
#define KC_A_DEL ALT_T(KC_DEL)       // alt

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {

  [_QWERTY] = LAYOUT( \
  //,--------+--------+---------+--------+---------+--------.   ,--------+---------+--------+---------+--------+--------.
     KC_ESC , KC_Q   , KC_W    , KC_E   , KC_R    , KC_T   ,     KC_Y   , KC_U    , KC_I   , KC_O    , KC_P   , KC_MINS,
  //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
     KC_TAB , KC_A   , KC_S    , KC_D   , KC_F    , KC_G   ,     KC_H   , KC_J    , KC_K   , KC_L    , KC_SCLN, KC_QUOT,
  //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
     KC_LSFT, KC_Z   , KC_X    , KC_C   , KC_V    , KC_B   ,     KC_N   , KC_M    , KC_COMM, KC_DOT  , KC_SLSH, KC_RSFT,
  //`--------+--------+---------+--------+---------+--------/   \--------+---------+--------+---------+--------+--------'
                       KC_A_DEL, KC_G_EN, KC_L_SPC, KC_C_BS,     KC_C_BS, KC_R_ENT, KC_G_JA, KC_A_DEL
  //                 `----------+--------+---------+--------'   `--------+---------+--------+---------'
  ),

  //   \ ^ ! & |  @ = + * % -
  // ( # $ " ' ~  ← ↓ ↑ → ` )
  //         { [  ] }

  [_RAISE] = LAYOUT( \
  //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
     _______, KC_BSLS, KC_CIRC, KC_EXLM, KC_AMPR, KC_PIPE,     KC_AT  , KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
  //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
     KC_LPRN, KC_HASH, KC_DLR , KC_DQT , KC_QUOT, KC_TILD,     KC_LEFT, KC_DOWN,  KC_UP , KC_RGHT, KC_GRV , KC_RPRN,
  //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
     _______, _______, _______, _______, KC_LCBR, KC_LBRC,     KC_RBRC, KC_RCBR, _______, _______, _______, _______,
  //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                       _______, _______, _______, _______,     _______, _______, _______, RESET
  //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
  ),

  [_LOWER] = LAYOUT( \
  //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
     KC_F1  , KC_F2  , KC_F3  , KC_F4  , KC_F5  , KC_F6  ,     _______, KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
  //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
     _______, KC_1   , KC_2   , KC_3   , KC_4   , KC_5   ,     KC_6   , KC_7   , KC_8   , KC_9   , KC_0   , _______,
  //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
     KC_F7  , KC_F8  , KC_F9  , KC_F10 , KC_F11 , KC_F12 ,     _______, _______, KC_COMM, KC_DOT , KC_SLSH, _______,
  //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                       RESET  , _______, _______, _______,     _______, _______, _______, _______
  //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
  ),
    [_QWERTY] = LAYOUT( \
    //,--------+--------+---------+--------+---------+--------.   ,--------+---------+--------+---------+--------+--------.
       KC_ESC , KC_Q   , KC_W    , KC_E   , KC_R    , KC_T   ,     KC_Y   , KC_U    , KC_I   , KC_O    , KC_P   , KC_MINS,
    //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
       KC_TAB , KC_A   , KC_S    , KC_D   , KC_F    , KC_G   ,     KC_H   , KC_J    , KC_K   , KC_L    , KC_SCLN, KC_QUOT,
    //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
       KC_LSFT, KC_Z   , KC_X    , KC_C   , KC_V    , KC_B   ,     KC_N   , KC_M    , KC_COMM, KC_DOT  , KC_SLSH, KC_RSFT,
    //`--------+--------+---------+--------+---------+--------/   \--------+---------+--------+---------+--------+--------'
                         KC_A_DEL, KC_G_EN, KC_L_SPC, KC_C_BS,     KC_C_BS, KC_R_ENT, KC_G_JA, KC_A_DEL
    //                 `----------+--------+---------+--------'   `--------+---------+--------+---------'
    ),

    [_RAISE] = LAYOUT( \
    //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
       _______, KC_BSLS, KC_CIRC, KC_EXLM, KC_AMPR, KC_PIPE,     KC_AT  , KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
       KC_LPRN, KC_HASH, KC_DLR , KC_DQT , KC_QUOT, KC_TILD,     KC_LEFT, KC_DOWN,  KC_UP , KC_RGHT, KC_GRV , KC_RPRN,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
       _______, _______, _______, _______, KC_LCBR, KC_LBRC,     KC_RBRC, KC_RCBR, _______, _______, _______, _______,
    //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                         _______, _______, _______, _______,     _______, _______, _______, RESET
    //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
    ),

    [_LOWER] = LAYOUT( \
    //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
       KC_F1  , KC_F2  , KC_F3  , KC_F4  , KC_F5  , KC_F6  ,     _______, KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
       _______, KC_1   , KC_2   , KC_3   , KC_4   , KC_5   ,     KC_6   , KC_7   , KC_8   , KC_9   , KC_0   , _______,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
       KC_F7  , KC_F8  , KC_F9  , KC_F10 , KC_F11 , KC_F12 ,     _______, _______, KC_COMM, KC_DOT , KC_SLSH, _______,
    //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                         RESET  , _______, _______, _______,     _______, _______, _______, _______
    //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
    ),
};

void matrix_init_user(void) {
  //SSD1306 OLED init, make sure to add #define SSD1306OLED in config.h
  #ifdef SSD1306OLED
    iota_gfx_init(!has_usb());   // turns on the display
  #endif
}

//SSD1306 OLED update loop, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED

// When add source files to SRC in rules.mk, you can use functions.
const char *read_layer_state(void);
const char *read_logo(void);
void set_keylog(uint16_t keycode, keyrecord_t *record);
const char *read_keylog(void);
const char *read_keylogs(void);

// const char *read_mode_icon(bool swap);
// const char *read_host_led_state(void);
// void set_timelog(void);
// const char *read_timelog(void);

void matrix_scan_user(void) {
  iota_gfx_task();
}

void matrix_render_user(struct CharacterMatrix *matrix) {
  if (is_master) {
    // If you want to change the display of OLED, you need to change here
    matrix_write_ln(matrix, read_layer_state());
    matrix_write_ln(matrix, read_keylog());
    matrix_write_ln(matrix, read_keylogs());
    //matrix_write_ln(matrix, read_mode_icon(keymap_config.swap_lalt_lgui));
    //matrix_write_ln(matrix, read_host_led_state());
    //matrix_write_ln(matrix, read_timelog());
  } else {
    matrix_write(matrix, read_logo());
  }
}

void matrix_update(struct CharacterMatrix *dest, const struct CharacterMatrix *source) {
  if (memcmp(dest->display, source->display, sizeof(dest->display))) {
    memcpy(dest->display, source->display, sizeof(dest->display));
    dest->dirty = true;
  }
}

void iota_gfx_task_user(void) {
  struct CharacterMatrix matrix;
  matrix_clear(&matrix);
  matrix_render_user(&matrix);
  matrix_update(&display, &matrix);
}
#endif//SSD1306OLED

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  if (record->event.pressed) {
#ifdef SSD1306OLED
    set_keylog(keycode, record);
#endif
    // set_timelog();
  }

  switch (keycode) {
    case QWERTY:
      if (record->event.pressed) {
        set_single_persistent_default_layer(_QWERTY);
      }
      return false;
      break;
    case LOWER:
      if (record->event.pressed) {
        layer_on(_LOWER);
      } else {
        layer_off(_LOWER);
      }
      return false;
      break;
    case RAISE:
      if (record->event.pressed) {
        layer_on(_RAISE);
      } else {
        layer_off(_RAISE);
      }
      return false;
      break;
  }
  return true;
}

R keyboards/claw44/keymaps/yfuku/config.h => keyboards/claw44/keymaps/oled/config.h +1 -13
@@ 20,17 20,5 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.

#pragma once

//#define USE_MATRIX_I2C

/* Select hand configuration */

#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS

#define SSD1306OLED

#define USE_SERIAL_PD2

#define TAPPING_TERM 180
#define IGNORE_MOD_TAP_INTERRUPT
#define OLED_FONT_H "keyboards/claw44/lib/glcdfont.c"

A keyboards/claw44/keymaps/oled/keymap.c => keyboards/claw44/keymaps/oled/keymap.c +137 -0
@@ 0,0 1,137 @@
#include QMK_KEYBOARD_H
#include <stdio.h>

// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.

enum layer_number {
    _QWERTY = 0,
    _RAISE,
    _LOWER,
};

#define KC_ KC_TRNS
#define KC_RST RESET
#define KC_L_SPC LT(_LOWER, KC_SPC)  // lower
#define KC_R_ENT LT(_RAISE, KC_ENT)  // raise
#define KC_G_JA LGUI_T(KC_LANG1)     // cmd or win
#define KC_G_EN LGUI_T(KC_LANG2)     // cmd or win
#define KC_C_BS LCTL_T(KC_BSPC)      // ctrl
#define KC_A_DEL ALT_T(KC_DEL)       // alt

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
    [_QWERTY] = LAYOUT( \
    //,--------+--------+---------+--------+---------+--------.   ,--------+---------+--------+---------+--------+--------.
        KC_ESC , KC_Q   , KC_W    , KC_E   , KC_R    , KC_T   ,     KC_Y   , KC_U    , KC_I   , KC_O    , KC_P   , KC_MINS,
    //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
        KC_TAB , KC_A   , KC_S    , KC_D   , KC_F    , KC_G   ,     KC_H   , KC_J    , KC_K   , KC_L    , KC_SCLN, KC_QUOT,
    //|--------+--------+---------+--------+---------+--------|   |--------+---------+--------+---------+--------+--------|
        KC_LSFT, KC_Z   , KC_X    , KC_C   , KC_V    , KC_B   ,     KC_N   , KC_M    , KC_COMM, KC_DOT  , KC_SLSH, KC_RSFT,
    //`--------+--------+---------+--------+---------+--------/   \--------+---------+--------+---------+--------+--------'
                          KC_A_DEL, KC_G_EN, KC_L_SPC, KC_C_BS,     KC_C_BS, KC_R_ENT, KC_G_JA, KC_A_DEL
    //                 `----------+--------+---------+--------'   `--------+---------+--------+---------'
    ),

    [_RAISE] = LAYOUT( \
    //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
        _______, KC_BSLS, KC_CIRC, KC_EXLM, KC_AMPR, KC_PIPE,     KC_AT  , KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
        KC_LPRN, KC_HASH, KC_DLR , KC_DQT , KC_QUOT, KC_TILD,     KC_LEFT, KC_DOWN,  KC_UP , KC_RGHT, KC_GRV , KC_RPRN,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
        _______, _______, _______, _______, KC_LCBR, KC_LBRC,     KC_RBRC, KC_RCBR, _______, _______, _______, _______,
    //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                          _______, _______, _______, _______,     _______, _______, _______, RESET
    //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
    ),

    [_LOWER] = LAYOUT( \
    //,--------+--------+--------+--------+--------+--------.   ,--------+--------+--------+--------+--------+--------.
        KC_F1  , KC_F2  , KC_F3  , KC_F4  , KC_F5  , KC_F6  ,     _______, KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
        _______, KC_1   , KC_2   , KC_3   , KC_4   , KC_5   ,     KC_6   , KC_7   , KC_8   , KC_9   , KC_0   , _______,
    //|--------+--------+--------+--------+--------+--------|   |--------+--------+--------+--------+--------+--------|
        KC_F7  , KC_F8  , KC_F9  , KC_F10 , KC_F11 , KC_F12 ,     _______, _______, KC_COMM, KC_DOT , KC_SLSH, _______,
    //`--------+--------+--------+--------+--------+--------/   \--------+--------+--------+--------+--------+--------'
                          RESET  , _______, _______, _______,     _______, _______, _______, _______
    //                  `--------+--------+--------+--------'   `--------+--------+--------+--------'
    ),
};

#ifdef OLED_DRIVER_ENABLE

void render_layer_state(void) {
    switch (get_highest_layer(layer_state)) {
        case _QWERTY:
            oled_write_ln_P(PSTR("Layer: Default"), false);
            break;
        case _RAISE:
            oled_write_ln_P(PSTR("Layer: Raise"), false);
            break;
        case _LOWER:
            oled_write_ln_P(PSTR("Layer: Lower"), false);
            break;
        default:
            oled_write_ln_P(PSTR("Layer: Undefined"), false);
    }
}

void render_logo(void) {
    static const char PROGMEM logo[] = {0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0};
    oled_write_P(logo, false);
}

char keylog_str[24]  = {};
char keylogs_str[21] = {};
int  keylogs_str_idx = 0;

const char code_to_name[60] = {' ', ' ', ' ', ' ', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', 'R', 'E', 'B', 'T', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ';', '\'', ' ', ',', '.', '/', ' ', ' ', ' '};

void set_keylog(uint16_t keycode, keyrecord_t *record) {
    char name = ' ';
    if (keycode < 60) {
        name = code_to_name[keycode];
    }

    // update keylog
    snprintf(keylog_str, sizeof(keylog_str), "%dx%d, k%2d : %c", record->event.key.row, record->event.key.col, keycode, name);

    // update keylogs
    if (keylogs_str_idx == sizeof(keylogs_str) - 1) {
        keylogs_str_idx = 0;
        for (int i = 0; i < sizeof(keylogs_str) - 1; i++) {
            keylogs_str[i] = ' ';
        }
    }

    keylogs_str[keylogs_str_idx] = name;
    keylogs_str_idx++;
}

const char *read_keylog(void) { return keylog_str; }
const char *read_keylogs(void) { return keylogs_str; }

void oled_task_user(void) {
    if (is_keyboard_master()) {
        render_layer_state();
        oled_write_ln(read_keylog(), false);
        oled_write_ln(read_keylogs(), false);
    } else {
        render_logo();
    }
}

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
    if (record->event.pressed) {
        set_keylog(keycode, record);
    }
    return true;
}

oled_rotation_t oled_init_user(oled_rotation_t rotation) {
    if (!is_keyboard_master()) return OLED_ROTATION_180;
    return rotation;
}

#endif

A keyboards/claw44/keymaps/oled/rules.mk => keyboards/claw44/keymaps/oled/rules.mk +1 -0
@@ 0,0 1,1 @@
OLED_DRIVER_ENABLE = yes

D keyboards/claw44/keymaps/yfuku/keymap.c => keyboards/claw44/keymaps/yfuku/keymap.c +0 -221
@@ 1,221 0,0 @@
#include QMK_KEYBOARD_H
#ifdef PROTOCOL_LUFA
  #include "lufa.h"
  #include "split_util.h"
#endif
#ifdef SSD1306OLED
  #include "ssd1306.h"
#endif

extern keymap_config_t keymap_config;

extern uint8_t is_master;

// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
enum custom_keycodes {
  QWERTY = SAFE_RANGE,
  LOWER,
  RAISE
};

enum macro_keycodes {
  KC_SAMPLEMACRO,
};

// common
#define KC_ KC_TRNS
#define KC_XXXX KC_NO
#define KC_RST RESET
#define KC_VD KC__VOLDOWN
#define KC_VU KC__VOLUP

// layer
#define KC_L_SPC LT(_LOWER, KC_SPC)
#define KC_R_ENT LT(_RAISE, KC_ENT)

// shift_t
#define KC_S_TAB LSFT_T(KC_TAB)
#define KC_S_ESC LSFT_T(KC_ESC)
#define KC_S_JA LSFT_T(KC_LANG1)
#define KC_S_EN LSFT_T(KC_LANG2)

// cmd_t
#define KC_M_F LCMD_T(KC_F)
#define KC_M_D LCMD_T(KC_D)
#define KC_M_J LCMD_T(KC_J)
#define KC_M_K LCMD_T(KC_K)

// ctl_t
#define KC_C_S LCTL_T(KC_S)
#define KC_C_L LCTL_T(KC_L)
#define KC_C_BS LCTL_T(KC_BSPC)

// alt_t
#define KC_A_D ALT_T(KC_D)
#define KC_A_K ALT_T(KC_K)
#define KC_A_Z ALT_T(KC_Z)
#define KC_A_SL ALT_T(KC_SLSH)
#define KC_A_DEL ALT_T(KC_DEL)

// cmd+shift_t
#define KC_MS_Q SCMD_T(KC_Q)
#define KC_MS_A SCMD_T(KC_A)
#define KC_MS_S SCMD_T(KC_S)
#define KC_MS_SC SCMD_T(KC_SCLN)
#define KC_MS_ESC SCMD_T(KC_ESC)

//
#define KC_MR RCMD(KC_R)
#define KC_MF RCMD(KC_F)
#define KC_MW RCMD(KC_W)
#define KC_MX RCMD(KC_X)
#define KC_MC RCMD(KC_C)
#define KC_MV RCMD(KC_V)
#define KC_MTAB RCMD(KC_TAB)
#define KC_MSF RCMD(RSFT(KC_F))
#define KC_MSR RCMD(RSFT(KC_R))
#define KC_MST RCMD(RSFT(KC_T))

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {

  // M_ = LCMD_T(
  // A_ = ALT_T(
  // C_ = LCTL_T(
  // MS_ = SMD_T(
  // R_ = LT(_RAISE
  // L_ = LT(_LOWER

  [_QWERTY] = LAYOUT_kc( \
  //,----+----+----+----+----+----.     ,----+----+----+----+----+----.
     ESC , Q  , W  , E  , R  , T  ,       Y  , U  , I  , O  , P  ,MINS,
  //|----+----+----+----+----+----|     |----+----+----+----+----+----|
    S_TAB, A  ,C_S , D  ,M_F , G  ,       H  ,M_J , K  ,C_L ,SCLN,S_ESC,
  //|----+----+----+----+----+----+     |----+----+----+----+----+----|
         , Z  , X  , C  , V  , B  ,       N  , M  ,COMM,DOT ,SLSH,    ,
  //`----+----+----+----+----+----/     \----+----+----+----+----+----'
             A_DEL,S_EN,L_SPC,C_BS,      C_BS,R_ENT,S_JA,A_DEL
  //          `----+----+----+----'     `----+----+----+----'
  ),

  //   \ ^ ! & |  @ = + * % -
  // ( # $ " ' ~  ← ↓ ↑ → ` )
  //         { [  ] }

  [_RAISE] = LAYOUT_kc( \
  //,----+----+----+----+----+----.     ,----+----+----+----+----+----.
         ,BSLS,CIRC,EXLM,AMPR,PIPE,      AT  ,EQL ,PLUS,ASTR,PERC,MINS,
  //|----+----+----+----+----+----|     |----+----+----+----+----+----|
     LPRN,HASH,DLR ,DQT ,QUOT,TILD,      LEFT,DOWN, UP ,RGHT,GRV ,RPRN,
  //|----+----+----+----+----+----|     |----+----+----+----+----+----|
        ,     ,    ,    ,LCBR,LBRC,      RBRC,RCBR,    ,    ,    ,    ,
  //`----+----+----+----+----+----/     \----+----+----+----+----+----'
                   ,    ,BSPC,    ,          ,    ,    ,RST
  //          `----+----+----+----'     `----+----+----+----'
  ),

  [_LOWER] = LAYOUT_kc( \
  //,----+----+----+----+----+----.     ,----+----+----+----+----+----.
         ,    ,    ,MSF ,MSR ,MST ,          ,EQL ,PLUS,ASTR,PERC,MINS,
  //|----+----+----+----+----+----|     |----+----+----+----+----+----|
         , 1  , 2  , 3  , 4  , 5  ,       6  , 7  , 8  , 9  , 0  ,    ,
  //|----+----+----+----+----+----|     |----+----+----+----+----+----|
         ,    ,    ,    ,    ,    ,          ,    ,COMM,DOT ,SLSH,    ,
  //`----+----+----+--+-+----+----/     \----+----+----+----+----+----'
               RST ,    ,    ,    ,          ,DEL ,    ,
  //          `----+----+----+----'     `----+----+----+----'
  ),
};

void matrix_init_user(void) {
  //SSD1306 OLED init, make sure to add #define SSD1306OLED in config.h
  #ifdef SSD1306OLED
    iota_gfx_init(!has_usb());   // turns on the display
  #endif
}

//SSD1306 OLED update loop, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED

// When add source files to SRC in rules.mk, you can use functions.
const char *read_layer_state(void);
const char *read_logo(void);
void set_keylog(uint16_t keycode, keyrecord_t *record);
const char *read_keylog(void);
const char *read_keylogs(void);

// const char *read_mode_icon(bool swap);
// const char *read_host_led_state(void);
// void set_timelog(void);
// const char *read_timelog(void);

void matrix_scan_user(void) {
  iota_gfx_task();
}

void matrix_render_user(struct CharacterMatrix *matrix) {
  if (is_master) {
    // If you want to change the display of OLED, you need to change here
    matrix_write_ln(matrix, read_layer_state());
    matrix_write_ln(matrix, read_keylog());
    matrix_write_ln(matrix, read_keylogs());
    //matrix_write_ln(matrix, read_mode_icon(keymap_config.swap_lalt_lgui));
    //matrix_write_ln(matrix, read_host_led_state());
    //matrix_write_ln(matrix, read_timelog());
  } else {
    matrix_write(matrix, read_logo());
  }
}

void matrix_update(struct CharacterMatrix *dest, const struct CharacterMatrix *source) {
  if (memcmp(dest->display, source->display, sizeof(dest->display))) {
    memcpy(dest->display, source->display, sizeof(dest->display));
    dest->dirty = true;
  }
}

void iota_gfx_task_user(void) {
  struct CharacterMatrix matrix;
  matrix_clear(&matrix);
  matrix_render_user(&matrix);
  matrix_update(&display, &matrix);
}
#endif//SSD1306OLED

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  if (record->event.pressed) {
#ifdef SSD1306OLED
    set_keylog(keycode, record);
#endif
    // set_timelog();
  }

  switch (keycode) {
    case QWERTY:
      if (record->event.pressed) {
        set_single_persistent_default_layer(_QWERTY);
      }
      return false;
      break;
    case LOWER:
      if (record->event.pressed) {
        layer_on(_LOWER);
      } else {
        layer_off(_LOWER);
      }
      return false;
      break;
    case RAISE:
      if (record->event.pressed) {
        layer_on(_RAISE);
      } else {
        layer_off(_RAISE);
      }
      return false;
      break;
  }
  return true;
}


M keyboards/claw44/lib/glcdfont.c => keyboards/claw44/lib/glcdfont.c +12 -1
@@ 1,7 1,17 @@
// This is the 'classic' fixed-space bitmap font for Adafruit_GFX since 1.0.
// See gfxfont.h for newer custom bitmap font info.

#include "progmem.h"
#ifndef FONT5X7_H
#define FONT5X7_H

#ifdef __AVR__
 #include <avr/io.h>
 #include <avr/pgmspace.h>
#elif defined(ESP8266)
 #include <pgmspace.h>
#else
 #define PROGMEM
#endif

// Standard ASCII 5x7 font
const unsigned char font[] PROGMEM = {


@@ 230,3 240,4 @@ const unsigned char font[] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
#endif // FONT5X7_H

D keyboards/claw44/lib/host_led_state_reader.c => keyboards/claw44/lib/host_led_state_reader.c +0 -15
@@ 1,15 0,0 @@
#include <stdio.h>
#include "claw44.h"

char host_led_state_str[24];

const char *read_host_led_state(void)
{
  uint8_t leds = host_keyboard_leds();
  snprintf(host_led_state_str, sizeof(host_led_state_str), "NL:%s CL:%s SL:%s",
           (leds & (1 << USB_LED_NUM_LOCK)) ? "on" : "- ",
           (leds & (1 << USB_LED_CAPS_LOCK)) ? "on" : "- ",
           (leds & (1 << USB_LED_SCROLL_LOCK)) ? "on" : "- ");

  return host_led_state_str;
}

D keyboards/claw44/lib/keylogger.c => keyboards/claw44/lib/keylogger.c +0 -45
@@ 1,45 0,0 @@
#include <stdio.h>
#include "claw44.h"

char keylog_str[24] = {};
char keylogs_str[21] = {};
int keylogs_str_idx = 0;

const char code_to_name[60] = {
    ' ', ' ', ' ', ' ', 'a', 'b', 'c', 'd', 'e', 'f',
    'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
    'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
    '1', '2', '3', '4', '5', '6', '7', '8', '9', '0',
    'R', 'E', 'B', 'T', ' ', ' ', ' ', ' ', ' ', ' ',
    ' ', ';', '\'', ' ', ',', '.', '/', ' ', ' ', ' '};

void set_keylog(uint16_t keycode, keyrecord_t *record) {
  char name = ' ';
  if (keycode < 60) {
    name = code_to_name[keycode];
  }

  // update keylog
  snprintf(keylog_str, sizeof(keylog_str), "%dx%d, k%2d : %c",
           record->event.key.row, record->event.key.col,
           keycode, name);

  // update keylogs
  if (keylogs_str_idx == sizeof(keylogs_str) - 1) {
    keylogs_str_idx = 0;
    for (int i = 0; i < sizeof(keylogs_str) - 1; i++) {
      keylogs_str[i] = ' ';
    }
  }

  keylogs_str[keylogs_str_idx] = name;
  keylogs_str_idx++;
}

const char *read_keylog(void) {
  return keylog_str;
}

const char *read_keylogs(void) {
  return keylogs_str;
}

D keyboards/claw44/lib/layer_state_reader.c => keyboards/claw44/lib/layer_state_reader.c +0 -35
@@ 1,35 0,0 @@

#include QMK_KEYBOARD_H
#include <stdio.h>
#include "claw44.h"

#define L_BASE 0
#define L_LOWER (1<<_LOWER)
#define L_RAISE (1<<_RAISE)
#define L_ADJUST (1<<_ADJUST)
#define L_ADJUST_TRI (L_ADJUST|L_RAISE|L_LOWER)

char layer_state_str[24];

const char *read_layer_state(void) {
  switch (layer_state)
  {
  case L_BASE:
    snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Default");
    break;
  case L_RAISE:
    snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Raise");
    break;
  case L_LOWER:
    snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Lower");
    break;
  case L_ADJUST:
  case L_ADJUST_TRI:
    snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Adjust");
    break;
  default:
    snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Undef-%ld", layer_state);
  }

  return layer_state_str;
}

D keyboards/claw44/lib/logo_reader.c => keyboards/claw44/lib/logo_reader.c +0 -11
@@ 1,11 0,0 @@
#include "claw44.h"

const char *read_logo(void) {
  static char logo[] = {
      0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94,
      0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4,
      0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4,
      0};

  return logo;
}

D keyboards/claw44/lib/mode_icon_reader.c => keyboards/claw44/lib/mode_icon_reader.c +0 -15
@@ 1,15 0,0 @@
#include <stdio.h>
#include "claw44.h"

char mode_icon[24];

const char *read_mode_icon(bool swap) {
  static char logo[][2][3] = {{{0x95, 0x96, 0}, {0xb5, 0xb6, 0}}, {{0x97, 0x98, 0}, {0xb7, 0xb8, 0}}};
  if (swap == false) {
    snprintf(mode_icon, sizeof(mode_icon), "%s\n%s", logo[0][0], logo[0][1]);
  } else {
    snprintf(mode_icon, sizeof(mode_icon), "%s\n%s", logo[1][0], logo[1][1]);
  }

  return mode_icon;
}

D keyboards/claw44/lib/rgb_state_reader.c => keyboards/claw44/lib/rgb_state_reader.c +0 -15
@@ 1,15 0,0 @@
#ifdef RGBLIGHT_ENABLE

#include QMK_KEYBOARD_H
#include <stdio.h>

extern rgblight_config_t rgblight_config;
char rbf_info_str[24];
const char *read_rgb_info(void) {

  snprintf(rbf_info_str, sizeof(rbf_info_str), "%s %2d h%3d s%3d v%3d",
    rgblight_config.enable ? "on" : "- ", rgblight_config.mode,
    rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
  return rbf_info_str;
}
#endif

D keyboards/claw44/lib/timelogger.c => keyboards/claw44/lib/timelogger.c +0 -16
@@ 1,16 0,0 @@
#include <stdio.h>
#include "claw44.h"

char timelog_str[24] = {};
int last_time = 0;
int elapsed_time = 0;

void set_timelog(void) {
  elapsed_time = timer_elapsed(last_time);
  last_time = timer_read();
  snprintf(timelog_str, sizeof(timelog_str), "lt:%5d, et:%5d", last_time, elapsed_time);
}

const char *read_timelog(void) {
  return timelog_str;
}

M keyboards/claw44/rev1/config.h => keyboards/claw44/rev1/config.h +11 -12
@@ 19,22 19,21 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#pragma once

/* USB Device descriptor parameter */
#define VENDOR_ID       0xFEED
#define PRODUCT_ID      0x3060
#define DEVICE_VER      0x0001
#define MANUFACTURER    yfuku
#define PRODUCT         claw44
#define DESCRIPTION     A split keyboard with 3x6 vertically staggered keys and 4 thumb keys
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x3060
#define DEVICE_VER 0x0001
#define MANUFACTURER yfuku
#define PRODUCT claw44
#define DESCRIPTION A split keyboard with 3x6 vertically staggered keys and 4 thumb keys

/* key matrix size */
// Rows are doubled-up
#define MATRIX_ROWS 8
#define MATRIX_COLS 7
#define MATRIX_COLS 6
#define MATRIX_ROW_PINS { D4, C6, D7, E6 }

// wiring of each half
#define MATRIX_COL_PINS { F4, F5, F6, F7, B1, B3, B2 }
// #define MATRIX_COL_PINS { B2, B3, B1, F7, F6, F5, F4 } //uncomment this line and comment line above if you need to reverse left-to-right key order
#define MATRIX_COL_PINS { F4, F5, F6, F7, B1, B3 }
#define UNUSED_PINS
#define DIODE_DIRECTION COL2ROW
#define SOFT_SERIAL_PIN D2

/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST

D keyboards/claw44/rev1/matrix.c => keyboards/claw44/rev1/matrix.c +0 -358
@@ 1,358 0,0 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "quantum.h"

#ifdef USE_MATRIX_I2C
#  include "i2c.h"
#else // USE_SERIAL
#  include "split_scomm.h"
#endif

#ifndef DEBOUNCE
#  define DEBOUNCE	5
#endif

#define ERROR_DISCONNECT_COUNT 5

static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;
uint8_t is_master = 0 ;

static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static uint8_t matrix_master_scan(void);


__attribute__ ((weak))
void matrix_init_kb(void) {
    matrix_init_user();
}

__attribute__ ((weak))
void matrix_scan_kb(void) {
    matrix_scan_user();
}

__attribute__ ((weak))
void matrix_init_user(void) {
}

__attribute__ ((weak))
void matrix_scan_user(void) {
}

inline
uint8_t matrix_rows(void)
{
    return MATRIX_ROWS;
}

inline
uint8_t matrix_cols(void)
{
    return MATRIX_COLS;
}

void matrix_init(void)
{
    debug_enable = true;
    debug_matrix = true;
    debug_mouse = true;
    // initialize row and col
    unselect_rows();
    init_cols();

    setPinOutput(B0);
    setPinOutput(D5);
    writePinHigh(B0);
    writePinHigh(D5);

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        matrix_debouncing[i] = 0;
    }

    is_master = has_usb();

    matrix_init_quantum();
}

uint8_t _matrix_scan(void)
{
    // Right hand is stored after the left in the matirx so, we need to offset it
    int offset = isLeftHand ? 0 : (ROWS_PER_HAND);

    for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
        select_row(i);
        _delay_us(30);  // without this wait read unstable value.
        matrix_row_t cols = read_cols();
        if (matrix_debouncing[i+offset] != cols) {
            matrix_debouncing[i+offset] = cols;
            debouncing = DEBOUNCE;
        }
        unselect_rows();
    }

    if (debouncing) {
        if (--debouncing) {
            _delay_ms(1);
        } else {
            for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
                matrix[i+offset] = matrix_debouncing[i+offset];
            }
        }
    }

    return 1;
}

#ifdef USE_MATRIX_I2C

// Get rows from other half over i2c
int i2c_transaction(void) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;

    int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) goto i2c_error;

    // start of matrix stored at 0x00
    err = i2c_master_write(0x00);
    if (err) goto i2c_error;

    // Start read
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
    if (err) goto i2c_error;

    if (!err) {
        int i;
        for (i = 0; i < ROWS_PER_HAND-1; ++i) {
            matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
        }
        matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
        i2c_master_stop();
    } else {
i2c_error: // the cable is disconnceted, or something else went wrong
        i2c_reset_state();
        return err;
    }

    return 0;
}

#else // USE_SERIAL

int serial_transaction(int master_changed) {
    int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
#ifdef SERIAL_USE_MULTI_TRANSACTION
    int ret=serial_update_buffers(master_changed);
#else
    int ret=serial_update_buffers();
#endif
    if (ret ) {
        if(ret==2) writePinLow(B0);
        return 1;
    }
    writePinHigh(B0);
    memcpy(&matrix[slaveOffset],
        (void *)serial_slave_buffer, SERIAL_SLAVE_BUFFER_LENGTH);
    return 0;
}
#endif

uint8_t matrix_scan(void)
{
    if (is_master) {
        matrix_master_scan();
    }else{
        matrix_slave_scan();
        int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
        memcpy(&matrix[offset],
               (void *)serial_master_buffer, SERIAL_MASTER_BUFFER_LENGTH);
        matrix_scan_quantum();
    }
    return 1;
}


uint8_t matrix_master_scan(void) {

    int ret = _matrix_scan();
    int mchanged = 1;

    int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;

#ifdef USE_MATRIX_I2C
//    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        /* i2c_slave_buffer[i] = matrix[offset+i]; */
//        i2c_slave_buffer[i] = matrix[offset+i];
//    }
#else // USE_SERIAL
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    mchanged = memcmp((void *)serial_master_buffer,
		      &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
  #endif
    memcpy((void *)serial_master_buffer,
	   &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
#endif

#ifdef USE_MATRIX_I2C
    if( i2c_transaction() ) {
#else // USE_SERIAL
    if( serial_transaction(mchanged) ) {
#endif
        // turn on the indicator led when halves are disconnected
        writePinLow(D5);

        error_count++;

        if (error_count > ERROR_DISCONNECT_COUNT) {
            // reset other half if disconnected
            int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
            for (int i = 0; i < ROWS_PER_HAND; ++i) {
                matrix[slaveOffset+i] = 0;
            }
        }
    } else {
        // turn off the indicator led on no error
        writePinHigh(D5);
        error_count = 0;
    }
    matrix_scan_quantum();
    return ret;
}

void matrix_slave_scan(void) {
    _matrix_scan();

    int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;

#ifdef USE_MATRIX_I2C
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
        /* i2c_slave_buffer[i] = matrix[offset+i]; */
        i2c_slave_buffer[i] = matrix[offset+i];
    }
#else // USE_SERIAL
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    int change = 0;
  #endif
    for (int i = 0; i < ROWS_PER_HAND; ++i) {
  #ifdef SERIAL_USE_MULTI_TRANSACTION
        if( serial_slave_buffer[i] != matrix[offset+i] )
	    change = 1;
  #endif
        serial_slave_buffer[i] = matrix[offset+i];
    }
  #ifdef SERIAL_USE_MULTI_TRANSACTION
    slave_buffer_change_count += change;
  #endif
#endif
}

bool matrix_is_modified(void)
{
    if (debouncing) return false;
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
    return matrix[row];
}

void matrix_print(void)
{
    print("\nr/c 0123456789ABCDEF\n");
    for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
        phex(row); print(": ");
        pbin_reverse16(matrix_get_row(row));
        print("\n");
    }
}

uint8_t matrix_key_count(void)
{
    uint8_t count = 0;
    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        count += bitpop16(matrix[i]);
    }
    return count;
}

static void  init_cols(void)
{
    for(int x = 0; x < MATRIX_COLS; x++) {
        _SFR_IO8((col_pins[x] >> 4) + 1) &=  ~_BV(col_pins[x] & 0xF);
        _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
    }
}

static matrix_row_t read_cols(void)
{
    matrix_row_t result = 0;
    for(int x = 0; x < MATRIX_COLS; x++) {
        result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
    }
    return result;
}

static void unselect_rows(void)
{
    for(int x = 0; x < ROWS_PER_HAND; x++) {
        _SFR_IO8((row_pins[x] >> 4) + 1) &=  ~_BV(row_pins[x] & 0xF);
        _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
    }
}

static void select_row(uint8_t row)
{
    _SFR_IO8((row_pins[row] >> 4) + 1) |=  _BV(row_pins[row] & 0xF);
    _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

M keyboards/claw44/rev1/rev1.c => keyboards/claw44/rev1/rev1.c +1 -8
@@ 1,8 1,1 @@
#include "claw44.h"

#ifdef SSD1306OLED
void led_set_kb(uint8_t usb_led) {
  // put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
  //led_set_user(usb_led);
}
#endif
#include "rev1.h"

M keyboards/claw44/rev1/rev1.h => keyboards/claw44/rev1/rev1.h +26 -48
@@ 1,55 1,33 @@
#pragma once

#include "../claw44.h"

#include "quantum.h"

#ifdef RGBLIGHT_ENABLE
//rgb led driver
#include "ws2812.h"
#endif

#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
	#include <avr/io.h>
	#include <avr/interrupt.h>
#endif
#endif

#define LAYOUT( \
  L00, L01, L02, L03, L04, L05,           R00, R01, R02, R03, R04, R05, \
  L10, L11, L12, L13, L14, L15,           R10, R11, R12, R13, R14, R15, \
  L20, L21, L22, L23, L24, L25,           R20, R21, R22, R23, R24, R25, \
                 L30, L31, L32, L33, R30, R31, R32, R33 \
  ) \
  { \
    { L00, L01, L02, L03, L04, L05 }, \
    { L10, L11, L12, L13, L14, L15 }, \
    { L20, L21, L22, L23, L24, L25 }, \
    { KC_NO, KC_NO, L30, L31, L32, L33 }, \
    { R05, R04, R03, R02, R01, R00 }, \
    { R15, R14, R13, R12, R11, R10 }, \
    { R25, R24, R23, R22, R21, R20 }, \
    { KC_NO, KC_NO, R33, R32, R31, R30 } \
  }
    L00, L01, L02, L03, L04, L05,           R00, R01, R02, R03, R04, R05, \
    L10, L11, L12, L13, L14, L15,           R10, R11, R12, R13, R14, R15, \
    L20, L21, L22, L23, L24, L25,           R20, R21, R22, R23, R24, R25, \
                   L30, L31, L32, L33, R30, R31, R32, R33 \
    ) \
    { \
        { L00, L01, L02, L03, L04, L05 }, \
        { L10, L11, L12, L13, L14, L15 }, \
        { L20, L21, L22, L23, L24, L25 }, \
        { KC_NO, KC_NO, L30, L31, L32, L33 }, \
        { R05, R04, R03, R02, R01, R00 }, \
        { R15, R14, R13, R12, R11, R10 }, \
        { R25, R24, R23, R22, R21, R20 }, \
        { KC_NO, KC_NO, R33, R32, R31, R30 } \
    }

#define LAYOUT_kc( \
  L00, L01, L02, L03, L04, L05,           R00, R01, R02, R03, R04, R05, \
  L10, L11, L12, L13, L14, L15,           R10, R11, R12, R13, R14, R15, \
  L20, L21, L22, L23, L24, L25,           R20, R21, R22, R23, R24, R25, \
                 L30, L31, L32, L33, R30, R31, R32, R33 \
  ) \
  LAYOUT( \
    KC_##L00, KC_##L01, KC_##L02, KC_##L03, KC_##L04, KC_##L05,                     KC_##R00, KC_##R01, KC_##R02, KC_##R03, KC_##R04, KC_##R05, \
    KC_##L10, KC_##L11, KC_##L12, KC_##L13, KC_##L14, KC_##L15,                     KC_##R10, KC_##R11, KC_##R12, KC_##R13, KC_##R14, KC_##R15, \
    KC_##L20, KC_##L21, KC_##L22, KC_##L23, KC_##L24, KC_##L25,                     KC_##R20, KC_##R21, KC_##R22, KC_##R23, KC_##R24, KC_##R25, \
                                  KC_##L30, KC_##L31, KC_##L32, KC_##L33, KC_##R30, KC_##R31, KC_##R32, KC_##R33 \
  )

enum layer_number {
  _QWERTY = 0,
  _LOWER,
  _RAISE,
  _ADJUST,
};
    L00, L01, L02, L03, L04, L05,           R00, R01, R02, R03, R04, R05, \
    L10, L11, L12, L13, L14, L15,           R10, R11, R12, R13, R14, R15, \
    L20, L21, L22, L23, L24, L25,           R20, R21, R22, R23, R24, R25, \
                   L30, L31, L32, L33, R30, R31, R32, R33 \
    ) \
    LAYOUT( \
        KC_##L00, KC_##L01, KC_##L02, KC_##L03, KC_##L04, KC_##L05,                     KC_##R00, KC_##R01, KC_##R02, KC_##R03, KC_##R04, KC_##R05, \
        KC_##L10, KC_##L11, KC_##L12, KC_##L13, KC_##L14, KC_##L15,                     KC_##R10, KC_##R11, KC_##R12, KC_##R13, KC_##R14, KC_##R15, \
        KC_##L20, KC_##L21, KC_##L22, KC_##L23, KC_##L24, KC_##L25,                     KC_##R20, KC_##R21, KC_##R22, KC_##R23, KC_##R24, KC_##R25, \
                                      KC_##L30, KC_##L31, KC_##L32, KC_##L33, KC_##R30, KC_##R31, KC_##R32, KC_##R33 \
    )

M keyboards/claw44/rev1/rules.mk => keyboards/claw44/rev1/rules.mk +2 -14
@@ 1,7 1,3 @@
SRC += rev1/matrix.c
SRC += rev1/split_util.c
SRC += rev1/split_scomm.c

# Build Options
BOOTMAGIC_ENABLE = no       # Virtual DIP switch configuration
MOUSEKEY_ENABLE = no        # Mouse keys


@@ 10,7 6,6 @@ CONSOLE_ENABLE = no         # Console for debug
COMMAND_ENABLE = no         # Commands for debug and configuration
NKRO_ENABLE = no            # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality
MIDI_ENABLE = no            # MIDI controls
AUDIO_ENABLE = no           # Audio output on port C6
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID


@@ 20,12 15,5 @@ SWAP_HANDS_ENABLE = no      # Enable one-hand typing
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no    # Breathing sleep LED during USB suspend

# If you want to change the display of OLED, you need to change here
SRC += ./lib/glcdfont.c \
       ./lib/layer_state_reader.c \
       ./lib/logo_reader.c \
       ./lib/keylogger.c \
       # ./lib/rgb_state_reader.c \
       # ./lib/mode_icon_reader.c \
       # ./lib/host_led_state_reader.c \
       # ./lib/timelogger.c \
OLED_DRIVER_ENABLE = no     # Add OLED displays support
SPLIT_KEYBOARD = yes

D keyboards/claw44/rev1/serial_config.h => keyboards/claw44/rev1/serial_config.h +0 -4
@@ 1,4 0,0 @@
#ifndef SOFT_SERIAL_PIN
#define SOFT_SERIAL_PIN D2
#define SERIAL_USE_MULTI_TRANSACTION
#endif

D keyboards/claw44/rev1/split_scomm.c => keyboards/claw44/rev1/split_scomm.c +0 -91
@@ 1,91 0,0 @@
#ifdef USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
/* --- USE flexible API (using multi-type transaction function) --- */

#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <split_scomm.h>
#include "serial.h"
#ifdef CONSOLE_ENABLE
  #include <print.h>
#endif

uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
uint8_t volatile status_com = 0;
uint8_t volatile status1 = 0;
uint8_t slave_buffer_change_count = 0;
uint8_t s_change_old = 0xff;
uint8_t s_change_new = 0xff;

SSTD_t transactions[] = {
#define GET_SLAVE_STATUS 0
    /* master buffer not changed, only recive slave_buffer_change_count */
    { (uint8_t *)&status_com,
      0, NULL,
      sizeof(slave_buffer_change_count), &slave_buffer_change_count,
    },
#define PUT_MASTER_GET_SLAVE_STATUS 1
    /* master buffer changed need send, and recive slave_buffer_change_count  */
    { (uint8_t *)&status_com,
      sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
      sizeof(slave_buffer_change_count), &slave_buffer_change_count,
    },
#define GET_SLAVE_BUFFER 2
    /* recive serial_slave_buffer */
    { (uint8_t *)&status1,
      0, NULL,
      sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
    }
};

void serial_master_init(void)
{
    soft_serial_initiator_init(transactions, TID_LIMIT(transactions));
}

void serial_slave_init(void)
{
    soft_serial_target_init(transactions, TID_LIMIT(transactions));
}

// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers(int master_update)
{
    int status, smatstatus;
    static int need_retry = 0;

    if( s_change_old != s_change_new ) {
        smatstatus = soft_serial_transaction(GET_SLAVE_BUFFER);
        if( smatstatus == TRANSACTION_END ) {
            s_change_old = s_change_new;
#ifdef CONSOLE_ENABLE
            uprintf("slave matrix = %b %b %b %b\n",
                    serial_slave_buffer[0], serial_slave_buffer[1],
                    serial_slave_buffer[2], serial_slave_buffer[3]);
#endif
        }
    } else {
        // serial_slave_buffer dosen't change
        smatstatus = TRANSACTION_END; // dummy status
    }

    if( !master_update && !need_retry) {
        status = soft_serial_transaction(GET_SLAVE_STATUS);
    } else {
        status = soft_serial_transaction(PUT_MASTER_GET_SLAVE_STATUS);
    }
    if( status == TRANSACTION_END ) {
        s_change_new = slave_buffer_change_count;
        need_retry = 0;
    } else {
        need_retry = 1;
    }
    return smatstatus;
}

#endif // SERIAL_USE_MULTI_TRANSACTION
#endif /* USE_SERIAL */

D keyboards/claw44/rev1/split_scomm.h => keyboards/claw44/rev1/split_scomm.h +0 -24
@@ 1,24 0,0 @@
#ifndef SPLIT_COMM_H
#define SPLIT_COMM_H

#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) --- */
#include "serial.h"

#else
/* --- USE flexible API (using multi-type transaction function) --- */
// Buffers for master - slave communication
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
#define SERIAL_MASTER_BUFFER_LENGTH MATRIX_ROWS/2

extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
extern uint8_t slave_buffer_change_count;

void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(int master_changed);

#endif

#endif /* SPLIT_COMM_H */

D keyboards/claw44/rev1/split_util.c => keyboards/claw44/rev1/split_util.c +0 -70
@@ 1,70 0,0 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"

#ifdef USE_MATRIX_I2C
#  include "i2c.h"
#else
#  include "split_scomm.h"
#endif

volatile bool isLeftHand = true;

static void setup_handedness(void) {
  #ifdef EE_HANDS
    isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
  #else
    // I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
    #if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
      isLeftHand = !has_usb();
    #else
      isLeftHand = has_usb();
    #endif
  #endif
}

static void keyboard_master_setup(void) {

#ifdef USE_MATRIX_I2C
    i2c_master_init();
#else
    serial_master_init();
#endif
}

static void keyboard_slave_setup(void) {

#ifdef USE_MATRIX_I2C
    i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
    serial_slave_init();
#endif
}

bool has_usb(void) {
   USBCON |= (1 << OTGPADE); //enables VBUS pad
   _delay_us(5);
   return (USBSTA & (1<<VBUS));  //checks state of VBUS
}

void split_keyboard_setup(void) {
   setup_handedness();

   if (has_usb()) {
      keyboard_master_setup();
   } else {
      keyboard_slave_setup();
   }
   sei();
}

// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
    split_keyboard_setup();
}

D keyboards/claw44/rev1/split_util.h => keyboards/claw44/rev1/split_util.h +0 -19
@@ 1,19 0,0 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H

#include <stdbool.h>
#include "eeconfig.h"

#define SLAVE_I2C_ADDRESS           0x32

extern volatile bool isLeftHand;

// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);

void split_keyboard_setup(void);
bool has_usb(void);

void matrix_master_OLED_init (void);

#endif

M keyboards/claw44/rules.mk => keyboards/claw44/rules.mk +0 -9
@@ 22,7 22,6 @@ CONSOLE_ENABLE = no         # Console for debug
COMMAND_ENABLE = no        # Commands for debug and configuration
NKRO_ENABLE = no            # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no      # Enable keyboard backlight functionality
MIDI_ENABLE = no            # MIDI controls
AUDIO_ENABLE = no           # Audio output on port C6
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID


@@ 30,12 29,4 @@ RGBLIGHT_ENABLE = no       # Enable WS2812 RGB underlight.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no    # Breathing sleep LED during USB suspend

CUSTOM_MATRIX = yes
SRC += i2c.c
SRC += serial.c
SRC += ssd1306.c

# if firmware size over limit, try this option
# CFLAGS += -flto

DEFAULT_FOLDER = claw44/rev1

D keyboards/claw44/serial.c => keyboards/claw44/serial.c +0 -589
@@ 1,589 0,0 @@
/*
 * WARNING: be careful changing this code, it is very timing dependent
 *
 * 2018-10-28 checked
 *  avr-gcc 4.9.2
 *  avr-gcc 5.4.0
 *  avr-gcc 7.3.0
 */

#ifndef F_CPU
#define F_CPU 16000000
#endif

#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"

#ifdef SOFT_SERIAL_PIN

#ifdef __AVR_ATmega32U4__
  // if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial.
  #ifdef USE_I2C
    #if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1
      #error Using ATmega32U4 I2C, so can not use PD0, PD1
    #endif
  #endif

  #if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3
    #define SERIAL_PIN_DDR   DDRD
    #define SERIAL_PIN_PORT  PORTD
    #define SERIAL_PIN_INPUT PIND
    #if SOFT_SERIAL_PIN == D0
      #define SERIAL_PIN_MASK _BV(PD0)
      #define EIMSK_BIT       _BV(INT0)
      #define EICRx_BIT       (~(_BV(ISC00) | _BV(ISC01)))
      #define SERIAL_PIN_INTERRUPT INT0_vect
    #elif  SOFT_SERIAL_PIN == D1
      #define SERIAL_PIN_MASK _BV(PD1)
      #define EIMSK_BIT       _BV(INT1)
      #define EICRx_BIT       (~(_BV(ISC10) | _BV(ISC11)))
      #define SERIAL_PIN_INTERRUPT INT1_vect
    #elif  SOFT_SERIAL_PIN == D2
      #define SERIAL_PIN_MASK _BV(PD2)
      #define EIMSK_BIT       _BV(INT2)
      #define EICRx_BIT       (~(_BV(ISC20) | _BV(ISC21)))
      #define SERIAL_PIN_INTERRUPT INT2_vect
    #elif  SOFT_SERIAL_PIN == D3
      #define SERIAL_PIN_MASK _BV(PD3)
      #define EIMSK_BIT       _BV(INT3)
      #define EICRx_BIT       (~(_BV(ISC30) | _BV(ISC31)))
      #define SERIAL_PIN_INTERRUPT INT3_vect
    #endif
  #elif  SOFT_SERIAL_PIN == E6
    #define SERIAL_PIN_DDR   DDRE
    #define SERIAL_PIN_PORT  PORTE
    #define SERIAL_PIN_INPUT PINE
    #define SERIAL_PIN_MASK  _BV(PE6)
    #define EIMSK_BIT        _BV(INT6)
    #define EICRx_BIT        (~(_BV(ISC60) | _BV(ISC61)))
    #define SERIAL_PIN_INTERRUPT INT6_vect
  #else
  #error invalid SOFT_SERIAL_PIN value
  #endif

#else
 #error serial.c now support ATmega32U4 only
#endif

//////////////// for backward compatibility ////////////////////////////////
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
  #if SERIAL_SLAVE_BUFFER_LENGTH > 0
  uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
  #endif
  #if SERIAL_MASTER_BUFFER_LENGTH > 0
  uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
  #endif
  uint8_t volatile status0 = 0;

SSTD_t transactions[] = {
    { (uint8_t *)&status0,
  #if SERIAL_MASTER_BUFFER_LENGTH > 0
      sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
  #else
      0, (uint8_t *)NULL,
  #endif
  #if SERIAL_SLAVE_BUFFER_LENGTH > 0
      sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
  #else
      0, (uint8_t *)NULL,
  #endif
  }
};

void serial_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }

void serial_slave_init(void)
{ soft_serial_target_init(transactions, TID_LIMIT(transactions)); }

// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers()
{
    int result;
    result = soft_serial_transaction();
    return result;
}

#endif // end of Simple API (OLD API, compatible with let's split serial.c)
////////////////////////////////////////////////////////////////////////////

#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x)    __builtin_avr_delay_cycles(x)

// parity check
#define ODD_PARITY 1
#define EVEN_PARITY 0
#define PARITY EVEN_PARITY

#ifdef SERIAL_DELAY
  // custom setup in config.h
  // #define TID_SEND_ADJUST 2
  // #define SERIAL_DELAY 6             // micro sec
  // #define READ_WRITE_START_ADJUST 30 // cycles
  // #define READ_WRITE_WIDTH_ADJUST 8 // cycles
#else
// ============ Standard setups ============

#ifndef SELECT_SOFT_SERIAL_SPEED
#define SELECT_SOFT_SERIAL_SPEED 1
//  0: about 189kbps
//  1: about 137kbps (default)
//  2: about 75kbps
//  3: about 39kbps
//  4: about 26kbps
//  5: about 20kbps
#endif

#if __GNUC__ < 6
  #define TID_SEND_ADJUST 14
#else
  #define TID_SEND_ADJUST 2
#endif

#if SELECT_SOFT_SERIAL_SPEED == 0
  // Very High speed
  #define SERIAL_DELAY 4             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 34 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 1
  // High speed
  #define SERIAL_DELAY 6             // micro sec
  #if __GNUC__ < 6
    #define READ_WRITE_START_ADJUST 30 // cycles
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_START_ADJUST 33 // cycles
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 2
  // Middle speed
  #define SERIAL_DELAY 12            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 3
  // Low speed
  #define SERIAL_DELAY 24            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 4
  // Very Low speed
  #define SERIAL_DELAY 36            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#elif SELECT_SOFT_SERIAL_SPEED == 5
  // Ultra Low speed
  #define SERIAL_DELAY 48            // micro sec
  #define READ_WRITE_START_ADJUST 30 // cycles
  #if __GNUC__ < 6
    #define READ_WRITE_WIDTH_ADJUST 3 // cycles
  #else
    #define READ_WRITE_WIDTH_ADJUST 7 // cycles
  #endif
#else
#error invalid SELECT_SOFT_SERIAL_SPEED value
#endif /* SELECT_SOFT_SERIAL_SPEED */
#endif /* SERIAL_DELAY */

#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)

#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
  #define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
  #define SLAVE_INT_ACK_WIDTH_UNIT 2
  #define SLAVE_INT_ACK_WIDTH 4
#endif

static SSTD_t *Transaction_table = NULL;
static uint8_t Transaction_table_size = 0;

inline static void serial_delay(void) ALWAYS_INLINE;
inline static
void serial_delay(void) {
  _delay_us(SERIAL_DELAY);
}

inline static void serial_delay_half1(void) ALWAYS_INLINE;
inline static
void serial_delay_half1(void) {
  _delay_us(SERIAL_DELAY_HALF1);
}

inline static void serial_delay_half2(void) ALWAYS_INLINE;
inline static
void serial_delay_half2(void) {
  _delay_us(SERIAL_DELAY_HALF2);
}

inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
  SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}

// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
  SERIAL_PIN_DDR  &= ~SERIAL_PIN_MASK;
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

inline static uint8_t serial_read_pin(void) ALWAYS_INLINE;
inline static
uint8_t serial_read_pin(void) {
  return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}

inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
  SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}

inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
  SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}

void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_output();
    serial_high();
}

void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size)
{
    Transaction_table = sstd_table;
    Transaction_table_size = (uint8_t)sstd_table_size;
    serial_input_with_pullup();

    // Enable INT0-INT3,INT6
    EIMSK |= EIMSK_BIT;
#if SERIAL_PIN_MASK == _BV(PE6)
    // Trigger on falling edge of INT6
    EICRB &= EICRx_BIT;
#else
    // Trigger on falling edge of INT0-INT3
    EICRA &= EICRx_BIT;
#endif
}

// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
  for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
  }
  // This shouldn't hang if the target disconnects because the
  // serial line will float to high if the target does disconnect.
  while (!serial_read_pin());
}

// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void) NO_INLINE;
static
void sync_send(void) {
  serial_low();
  serial_delay();
  serial_high();
}

// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
    uint8_t byte, i, p, pb;

  _delay_sub_us(READ_WRITE_START_ADJUST);
  for( i = 0, byte = 0, p = PARITY; i < bit; i++ ) {
      serial_delay_half1();   // read the middle of pulses
      if( serial_read_pin() ) {
          byte = (byte << 1) | 1; p ^= 1;
      } else {
          byte = (byte << 1) | 0; p ^= 0;
      }
      _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
      serial_delay_half2();
  }
  /* recive parity bit */
  serial_delay_half1();   // read the middle of pulses
  pb = serial_read_pin();
  _delay_sub_us(READ_WRITE_WIDTH_ADJUST);
  serial_delay_half2();

  *pterrcount += (p != pb)? 1 : 0;

  return byte;
}

// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
    uint8_t b, p;
    for( p = PARITY, b = 1<<(bit-1); b ; b >>= 1) {
        if(data & b) {
            serial_high(); p ^= 1;
        } else {
            serial_low();  p ^= 0;
        }
        serial_delay();
    }
    /* send parity bit */
    if(p & 1) { serial_high(); }
    else      { serial_low(); }
    serial_delay();

    serial_low(); // sync_send() / senc_recv() need raise edge
}

static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    data = buffer[i];
    sync_send();
    serial_write_chunk(data,8);
  }
}

static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
  uint8_t pecount = 0;
  for (uint8_t i = 0; i < size; ++i) {
    uint8_t data;
    sync_recv();
    data = serial_read_chunk(&pecount, 8);
    buffer[i] = data;
  }
  return pecount == 0;
}

inline static
void change_sender2reciver(void) {
    sync_send();          //0
    serial_delay_half1(); //1
    serial_low();         //2
    serial_input_with_pullup(); //2
    serial_delay_half1(); //3
}

inline static
void change_reciver2sender(void) {
    sync_recv();     //0
    serial_delay();  //1
    serial_low();    //3
    serial_output(); //3
    serial_delay_half1(); //4
}

static inline uint8_t nibble_bits_count(uint8_t bits)
{
    bits = (bits & 0x5) + (bits >> 1 & 0x5);
    bits = (bits & 0x3) + (bits >> 2 & 0x3);
    return bits;
}

// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {

#ifndef SERIAL_USE_MULTI_TRANSACTION
  serial_low();
  serial_output();
  SSTD_t *trans = Transaction_table;
#else
  // recive transaction table index
  uint8_t tid, bits;
  uint8_t pecount = 0;
  sync_recv();
  bits = serial_read_chunk(&pecount,7);
  tid = bits>>3;
  bits = (bits&7) != nibble_bits_count(tid);
  if( bits || pecount> 0 || tid > Transaction_table_size ) {
      return;
  }
  serial_delay_half1();

  serial_high(); // response step1 low->high
  serial_output();
  _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
  SSTD_t *trans = &Transaction_table[tid];
  serial_low(); // response step2 ack high->low
#endif

  // target send phase
  if( trans->target2initiator_buffer_size > 0 )
      serial_send_packet((uint8_t *)trans->target2initiator_buffer,
                         trans->target2initiator_buffer_size);
  // target switch to input
  change_sender2reciver();

  // target recive phase
  if( trans->initiator2target_buffer_size > 0 ) {
      if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
                               trans->initiator2target_buffer_size) ) {
          *trans->status = TRANSACTION_ACCEPTED;
      } else {
          *trans->status = TRANSACTION_DATA_ERROR;
      }
  } else {
      *trans->status = TRANSACTION_ACCEPTED;
  }

  sync_recv(); //weit initiator output to high
}

/////////
//  start transaction by initiator
//
// int  soft_serial_transaction(int sstd_index)
//
// Returns:
//    TRANSACTION_END
//    TRANSACTION_NO_RESPONSE
//    TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_transaction(void) {
  SSTD_t *trans = Transaction_table;
#else
int  soft_serial_transaction(int sstd_index) {
  if( sstd_index > Transaction_table_size )
      return TRANSACTION_TYPE_ERROR;
  SSTD_t *trans = &Transaction_table[sstd_index];
#endif
  cli();

  // signal to the target that we want to start a transaction
  serial_output();
  serial_low();
  _delay_us(SLAVE_INT_WIDTH_US);

#ifndef SERIAL_USE_MULTI_TRANSACTION
  // wait for the target response
  serial_input_with_pullup();
  _delay_us(SLAVE_INT_RESPONSE_TIME);

  // check if the target is present
  if (serial_read_pin()) {
    // target failed to pull the line low, assume not present
    serial_output();
    serial_high();
    *trans->status = TRANSACTION_NO_RESPONSE;
    sei();
    return TRANSACTION_NO_RESPONSE;
  }

#else
  // send transaction table index
  int tid = (sstd_index<<3) | (7 & nibble_bits_count(sstd_index));
  sync_send();
  _delay_sub_us(TID_SEND_ADJUST);
  serial_write_chunk(tid, 7);
  serial_delay_half1();

  // wait for the target response (step1 low->high)
  serial_input_with_pullup();
  while( !serial_read_pin() ) {
      _delay_sub_us(2);
  }

  // check if the target is present (step2 high->low)
  for( int i = 0; serial_read_pin(); i++ ) {
      if (i > SLAVE_INT_ACK_WIDTH + 1) {
          // slave failed to pull the line low, assume not present
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_NO_RESPONSE;
          sei();
          return TRANSACTION_NO_RESPONSE;
      }
      _delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
  }
#endif

  // initiator recive phase
  // if the target is present syncronize with it
  if( trans->target2initiator_buffer_size > 0 ) {
      if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
                                trans->target2initiator_buffer_size) ) {
          serial_output();
          serial_high();
          *trans->status = TRANSACTION_DATA_ERROR;
          sei();
          return TRANSACTION_DATA_ERROR;
      }
   }

  // initiator switch to output
  change_reciver2sender();

  // initiator send phase
  if( trans->initiator2target_buffer_size > 0 ) {
      serial_send_packet((uint8_t *)trans->initiator2target_buffer,
                         trans->initiator2target_buffer_size);
  }

  // always, release the line when not in use
  sync_send();

  *trans->status = TRANSACTION_END;
  sei();
  return TRANSACTION_END;
}

#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
    SSTD_t *trans = &Transaction_table[sstd_index];
    cli();
    int retval = *trans->status;
    *trans->status = 0;;
    sei();
    return retval;
}
#endif

#endif

// Helix serial.c history
//   2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc)
//   2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4)
//             (adjusted with avr-gcc 4.9.2)
//   2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78)
//             (adjusted with avr-gcc 4.9.2)
//   2018-8-11 add support multi-type transaction (#3608, feb5e4aae)
//             (adjusted with avr-gcc 4.9.2)
//   2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff)
//             (adjusted with avr-gcc 7.3.0)
//   2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66)
//             (adjusted with avr-gcc 5.4.0, 7.3.0)

D keyboards/claw44/serial.h => keyboards/claw44/serial.h +0 -84
@@ 1,84 0,0 @@
#ifndef SOFT_SERIAL_H
#define SOFT_SERIAL_H

#include <stdbool.h>

// /////////////////////////////////////////////////////////////////
// Need Soft Serial defines in config.h
// /////////////////////////////////////////////////////////////////
// ex.
//  #define SOFT_SERIAL_PIN ??   // ?? = D0,D1,D2,D3,E6
//  OPTIONAL: #define SELECT_SOFT_SERIAL_SPEED ? // ? = 1,2,3,4,5
//                                               //  1: about 137kbps (default)
//                                               //  2: about 75kbps
//                                               //  3: about 39kbps
//                                               //  4: about 26kbps
//                                               //  5: about 20kbps
//
// //// USE Simple API (OLD API, compatible with let's split serial.c)
// ex.
//  #define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
//  #define SERIAL_MASTER_BUFFER_LENGTH 1
//
// //// USE flexible API (using multi-type transaction function)
//  #define SERIAL_USE_MULTI_TRANSACTION
//
// /////////////////////////////////////////////////////////////////


#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
#endif
#if SERIAL_MASTER_BUFFER_LENGTH > 0
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
#endif

void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(void);

#endif // USE Simple API

// Soft Serial Transaction Descriptor
typedef struct _SSTD_t  {
    uint8_t *status;
    uint8_t initiator2target_buffer_size;
    uint8_t *initiator2target_buffer;
    uint8_t target2initiator_buffer_size;
    uint8_t *target2initiator_buffer;
} SSTD_t;
#define TID_LIMIT( table ) (sizeof(table) / sizeof(SSTD_t))

// initiator is transaction start side
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size);
// target is interrupt accept side
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size);

// initiator resullt
#define TRANSACTION_END 0
#define TRANSACTION_NO_RESPONSE 0x1
#define TRANSACTION_DATA_ERROR  0x2
#define TRANSACTION_TYPE_ERROR  0x4
#ifndef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_transaction(void);
#else
int  soft_serial_transaction(int sstd_index);
#endif

// target status
// *SSTD_t.status has
//   initiator:
//       TRANSACTION_END
//    or TRANSACTION_NO_RESPONSE
//    or TRANSACTION_DATA_ERROR
//   target:
//       TRANSACTION_DATA_ERROR
//    or TRANSACTION_ACCEPTED
#define TRANSACTION_ACCEPTED 0x8
#ifdef SERIAL_USE_MULTI_TRANSACTION
int  soft_serial_get_and_clean_status(int sstd_index);
#endif

#endif /* SOFT_SERIAL_H */

D keyboards/claw44/ssd1306.c => keyboards/claw44/ssd1306.c +0 -345
@@ 1,345 0,0 @@
#ifdef SSD1306OLED

#include "ssd1306.h"
#include "i2c.h"
#include <string.h>
#include "print.h"
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#endif
#include "sendchar.h"
#include "timer.h"

struct CharacterMatrix display;

extern const unsigned char font[] PROGMEM;

// Set this to 1 to help diagnose early startup problems
// when testing power-on with ble.  Turn it off otherwise,
// as the latency of printing most of the debug info messes
// with the matrix scan, causing keys to drop.
#define DEBUG_TO_SCREEN 0

//static uint16_t last_battery_update;
//static uint32_t vbat;
//#define BatteryUpdateInterval 10000 /* milliseconds */

// 'last_flush' is declared as uint16_t,
// so this must be less than 65535 
#define ScreenOffInterval 60000 /* milliseconds */
#if DEBUG_TO_SCREEN
static uint8_t displaying;
#endif
static uint16_t last_flush;

static bool force_dirty = true;

// Write command sequence.
// Returns true on success.
static inline bool _send_cmd1(uint8_t cmd) {
  bool res = false;

  if (i2c_start_write(SSD1306_ADDRESS)) {
    xprintf("failed to start write to %d\n", SSD1306_ADDRESS);
    goto done;
  }

  if (i2c_master_write(0x0 /* command byte follows */)) {
    print("failed to write control byte\n");

    goto done;
  }

  if (i2c_master_write(cmd)) {
    xprintf("failed to write command %d\n", cmd);
    goto done;
  }
  res = true;
done:
  i2c_master_stop();
  return res;
}

// Write 2-byte command sequence.
// Returns true on success
static inline bool _send_cmd2(uint8_t cmd, uint8_t opr) {
  if (!_send_cmd1(cmd)) {
    return false;
  }
  return _send_cmd1(opr);
}

// Write 3-byte command sequence.
// Returns true on success
static inline bool _send_cmd3(uint8_t cmd, uint8_t opr1, uint8_t opr2) {
  if (!_send_cmd1(cmd)) {
    return false;
  }
  if (!_send_cmd1(opr1)) {
    return false;
  }
  return _send_cmd1(opr2);
}

#define send_cmd1(c) if (!_send_cmd1(c)) {goto done;}
#define send_cmd2(c,o) if (!_send_cmd2(c,o)) {goto done;}
#define send_cmd3(c,o1,o2) if (!_send_cmd3(c,o1,o2)) {goto done;}

static void clear_display(void) {
  matrix_clear(&display);

  // Clear all of the display bits (there can be random noise
  // in the RAM on startup)
  send_cmd3(PageAddr, 0, (DisplayHeight / 8) - 1);
  send_cmd3(ColumnAddr, 0, DisplayWidth - 1);

  if (i2c_start_write(SSD1306_ADDRESS)) {
    goto done;
  }
  if (i2c_master_write(0x40)) {
    // Data mode
    goto done;
  }
  for (uint8_t row = 0; row < MatrixRows; ++row) {
    for (uint8_t col = 0; col < DisplayWidth; ++col) {
      i2c_master_write(0);
    }
  }

  display.dirty = false;

done:
  i2c_master_stop();
}

#if DEBUG_TO_SCREEN
#undef sendchar
static int8_t capture_sendchar(uint8_t c) {
  sendchar(c);
  iota_gfx_write_char(c);

  if (!displaying) {
    iota_gfx_flush();
  }
  return 0;
}
#endif

bool iota_gfx_init(bool rotate) {
  bool success = false;

  i2c_master_init();
  send_cmd1(DisplayOff);
  send_cmd2(SetDisplayClockDiv, 0x80);
  send_cmd2(SetMultiPlex, DisplayHeight - 1);

  send_cmd2(SetDisplayOffset, 0);


  send_cmd1(SetStartLine | 0x0);
  send_cmd2(SetChargePump, 0x14 /* Enable */);
  send_cmd2(SetMemoryMode, 0 /* horizontal addressing */);

  if(rotate){
    // the following Flip the display orientation 180 degrees
    send_cmd1(SegRemap);
    send_cmd1(ComScanInc);
  }else{
    // Flips the display orientation 0 degrees
    send_cmd1(SegRemap | 0x1);
    send_cmd1(ComScanDec);
  }

  send_cmd2(SetComPins, 0x2);
  send_cmd2(SetContrast, 0x8f);
  send_cmd2(SetPreCharge, 0xf1);
  send_cmd2(SetVComDetect, 0x40);
  send_cmd1(DisplayAllOnResume);
  send_cmd1(NormalDisplay);
  send_cmd1(DeActivateScroll);
  send_cmd1(DisplayOn);

  send_cmd2(SetContrast, 0); // Dim

  clear_display();

  success = true;

  iota_gfx_flush();

#if DEBUG_TO_SCREEN
  print_set_sendchar(capture_sendchar);
#endif

done:
  return success;
}

bool iota_gfx_off(void) {
  bool success = false;

  send_cmd1(DisplayOff);
  success = true;

done:
  return success;
}

bool iota_gfx_on(void) {
  bool success = false;

  send_cmd1(DisplayOn);
  success = true;

done:
  return success;
}

void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c) {
  *matrix->cursor = c;
  ++matrix->cursor;

  if (matrix->cursor - &matrix->display[0][0] == sizeof(matrix->display)) {
    // We went off the end; scroll the display upwards by one line
    memmove(&matrix->display[0], &matrix->display[1],
            MatrixCols * (MatrixRows - 1));
    matrix->cursor = &matrix->display[MatrixRows - 1][0];
    memset(matrix->cursor, ' ', MatrixCols);
  }
}

void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c) {
  matrix->dirty = true;

  if (c == '\n') {
    // Clear to end of line from the cursor and then move to the
    // start of the next line
    uint8_t cursor_col = (matrix->cursor - &matrix->display[0][0]) % MatrixCols;

    while (cursor_col++ < MatrixCols) {
      matrix_write_char_inner(matrix, ' ');
    }
    return;
  }

  matrix_write_char_inner(matrix, c);
}

void iota_gfx_write_char(uint8_t c) {
  matrix_write_char(&display, c);
}

void matrix_write(struct CharacterMatrix *matrix, const char *data) {
  const char *end = data + strlen(data);
  while (data < end) {
    matrix_write_char(matrix, *data);
    ++data;
  }
}

void matrix_write_ln(struct CharacterMatrix *matrix, const char *data) {
  char data_ln[strlen(data)+2];
  snprintf(data_ln, sizeof(data_ln), "%s\n", data);
  matrix_write(matrix, data_ln);
}

void iota_gfx_write(const char *data) {
  matrix_write(&display, data);
}

void matrix_write_P(struct CharacterMatrix *matrix, const char *data) {
  while (true) {
    uint8_t c = pgm_read_byte(data);
    if (c == 0) {
      return;
    }
    matrix_write_char(matrix, c);
    ++data;
  }
}

void iota_gfx_write_P(const char *data) {
  matrix_write_P(&display, data);
}

void matrix_clear(struct CharacterMatrix *matrix) {
  memset(matrix->display, ' ', sizeof(matrix->display));
  matrix->cursor = &matrix->display[0][0];
  matrix->dirty = true;
}

void iota_gfx_clear_screen(void) {
  matrix_clear(&display);
}

void matrix_render(struct CharacterMatrix *matrix) {
  last_flush = timer_read();
  iota_gfx_on();
#if DEBUG_TO_SCREEN
  ++displaying;
#endif

  // Move to the home position
  send_cmd3(PageAddr, 0, MatrixRows - 1);
  send_cmd3(ColumnAddr, 0, (MatrixCols * FontWidth) - 1);

  if (i2c_start_write(SSD1306_ADDRESS)) {
    goto done;
  }
  if (i2c_master_write(0x40)) {
    // Data mode
    goto done;
  }

  for (uint8_t row = 0; row < MatrixRows; ++row) {
    for (uint8_t col = 0; col < MatrixCols; ++col) {
      const uint8_t *glyph = font + (matrix->display[row][col] * FontWidth);

      for (uint8_t glyphCol = 0; glyphCol < FontWidth; ++glyphCol) {
        uint8_t colBits = pgm_read_byte(glyph + glyphCol);
        i2c_master_write(colBits);
      }

      // 1 column of space between chars (it's not included in the glyph)
      //i2c_master_write(0);
    }
  }

  matrix->dirty = false;

done:
  i2c_master_stop();
#if DEBUG_TO_SCREEN
  --displaying;
#endif
}

void iota_gfx_flush(void) {
  matrix_render(&display);
}

__attribute__ ((weak))
void iota_gfx_task_user(void) {
}

void iota_gfx_task(void) {
  iota_gfx_task_user();

  if (display.dirty|| force_dirty) {
    iota_gfx_flush();
    force_dirty = false;
  }

  /*
  if (timer_elapsed(last_flush) > ScreenOffInterval) {
    iota_gfx_off();
  }
  */
}

bool process_record_gfx(uint16_t keycode, keyrecord_t *record) {
  force_dirty = true;
  return true;
}

#endif

D keyboards/claw44/ssd1306.h => keyboards/claw44/ssd1306.h +0 -90
@@ 1,90 0,0 @@
#pragma once

#include <stdbool.h>
#include <stdio.h>
#include "action.h"

enum ssd1306_cmds {
  DisplayOff = 0xAE,
  DisplayOn = 0xAF,

  SetContrast = 0x81,
  DisplayAllOnResume = 0xA4,

  DisplayAllOn = 0xA5,
  NormalDisplay = 0xA6,
  InvertDisplay = 0xA7,
  SetDisplayOffset = 0xD3,
  SetComPins = 0xda,
  SetVComDetect = 0xdb,
  SetDisplayClockDiv = 0xD5,
  SetPreCharge = 0xd9,
  SetMultiPlex = 0xa8,
  SetLowColumn = 0x00,
  SetHighColumn = 0x10,
  SetStartLine = 0x40,

  SetMemoryMode = 0x20,
  ColumnAddr = 0x21,
  PageAddr = 0x22,

  ComScanInc = 0xc0,
  ComScanDec = 0xc8,
  SegRemap = 0xa0,
  SetChargePump = 0x8d,
  ExternalVcc = 0x01,
  SwitchCapVcc = 0x02,

  ActivateScroll = 0x2f,
  DeActivateScroll = 0x2e,
  SetVerticalScrollArea = 0xa3,
  RightHorizontalScroll = 0x26,
  LeftHorizontalScroll = 0x27,
  VerticalAndRightHorizontalScroll = 0x29,
  VerticalAndLeftHorizontalScroll = 0x2a,
};

// Controls the SSD1306 128x32 OLED display via i2c

#ifndef SSD1306_ADDRESS
#define SSD1306_ADDRESS 0x3C
#endif

#define DisplayHeight 32
#define DisplayWidth 128

#define FontHeight 8
#define FontWidth 6

#define MatrixRows (DisplayHeight / FontHeight)
#define MatrixCols (DisplayWidth / FontWidth)

struct CharacterMatrix {
  uint8_t display[MatrixRows][MatrixCols];
  uint8_t *cursor;
  bool dirty;
};

extern struct CharacterMatrix display;

bool iota_gfx_init(bool rotate);
void iota_gfx_task(void);
bool iota_gfx_off(void);
bool iota_gfx_on(void);
void iota_gfx_flush(void);
void iota_gfx_write_char(uint8_t c);
void iota_gfx_write(const char *data);
void iota_gfx_write_P(const char *data);
void iota_gfx_clear_screen(void);

void iota_gfx_task_user(void);

void matrix_clear(struct CharacterMatrix *matrix);
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write(struct CharacterMatrix *matrix, const char *data);
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data);
void matrix_write_P(struct CharacterMatrix *matrix, const char *data);
void matrix_render(struct CharacterMatrix *matrix);

bool process_record_gfx(uint16_t keycode, keyrecord_t *record);