~ruther/qmk_firmware

6d7c6d4fd6a4af8e0355b5d10c68db3274c1a7f8 — fauxpark 5 years ago 8bc90ee
Cleanup rules.mk for 32U4 keyboards, R-S (#7182)

56 files changed, 203 insertions(+), 1537 deletions(-)

M keyboards/rabbit/rabbit68/rules.mk
D keyboards/redox/keymaps/default/rules.mk
M keyboards/redox/rev1/rules.mk
M keyboards/redox/rules.mk
M keyboards/redox_w/rules.mk
M keyboards/redscarf_iiplus/verb/rules.mk
M keyboards/redscarf_iiplus/verc/rules.mk
M keyboards/reviung34/rules.mk
M keyboards/reviung39/keymaps/default/rules.mk
M keyboards/reviung39/keymaps/default_s/rules.mk
M keyboards/reviung39/rules.mk
M keyboards/rgbkb/sol/keymaps/default/rules.mk
M keyboards/rgbkb/sol/rules.mk
M keyboards/rgbkb/zen/rules.mk
M keyboards/rgbkb/zygomorph/rules.mk
D keyboards/runner3680/3x6/keymaps/default/rules.mk
D keyboards/runner3680/3x7/keymaps/default/rules.mk
D keyboards/runner3680/3x8/keymaps/default/rules.mk
D keyboards/runner3680/4x6/keymaps/default/rules.mk
D keyboards/runner3680/4x7/keymaps/default/rules.mk
D keyboards/runner3680/4x8/keymaps/default/rules.mk
D keyboards/runner3680/5x6/keymaps/default/rules.mk
D keyboards/runner3680/5x7/keymaps/default/rules.mk
D keyboards/runner3680/5x8/keymaps/JIS/rules.mk
D keyboards/runner3680/5x8/keymaps/default/rules.mk
M keyboards/runner3680/rules.mk
M keyboards/s7_elephant/rules.mk
M keyboards/scarletbandana/rules.mk
M keyboards/sck/osa/rules.mk
M keyboards/scythe/rules.mk
M keyboards/sentraq/number_pad/rules.mk
M keyboards/sentraq/s60_x/default/rules.mk
M keyboards/sentraq/s60_x/rgb/rules.mk
M keyboards/sentraq/s65_plus/rules.mk
M keyboards/sentraq/s65_x/rules.mk
M keyboards/shiro/rules.mk
M keyboards/signum/3_0/elitec/rules.mk
D keyboards/singa/keymaps/default/rules.mk
D keyboards/singa/keymaps/test/rules.mk
M keyboards/sirius/unigo66/rules.mk
M keyboards/sixkeyboard/rules.mk
M keyboards/smk60/rules.mk
M keyboards/snagpad/rules.mk
M keyboards/snampad/rules.mk
M keyboards/southpole/rules.mk
M keyboards/spacetime/rules.mk
M keyboards/speedo/rules.mk
M keyboards/standaside/rules.mk
M keyboards/stella/rules.mk
M keyboards/suihankey/alpha/rules.mk
M keyboards/suihankey/rev1/rules.mk
M keyboards/suihankey/rules.mk
M keyboards/suihankey/split/alpha/rules.mk
M keyboards/suihankey/split/rev1/rules.mk
D keyboards/sx60/keymaps/default/rules.mk
M keyboards/sx60/rules.mk
M keyboards/rabbit/rabbit68/rules.mk => keyboards/rabbit/rabbit68/rules.mk +2 -2
@@ 1,14 1,14 @@
# MCU name
MCU = atmega32u4


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = halfkay

# Build Options

D keyboards/redox/keymaps/default/rules.mk => keyboards/redox/keymaps/default/rules.mk +0 -2
@@ 1,2 0,0 @@
RGBLIGHT_ENABLE = yes


M keyboards/redox/rev1/rules.mk => keyboards/redox/rev1/rules.mk +0 -1
@@ 1,1 0,0 @@
BACKLIGHT_ENABLE = no
\ No newline at end of file

M keyboards/redox/rules.mk => keyboards/redox/rules.mk +9 -45
@@ 1,51 1,15 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina

# Build Options
#   change yes to no to disable

M keyboards/redox_w/rules.mk => keyboards/redox_w/rules.mk +15 -49
@@ 1,57 1,16 @@

OPT_DEFS += -DREDOX_W_PROMICRO
INTERPHASE_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
                         avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)

# # project specific files
SRC = matrix.c


# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Bootloader
#     This definition is optional, and if your keyboard supports multiple bootloaders of
#     different sizes, comment this out, and the correct address will be loaded 
#     automatically (+60). See bootloader.mk for all options.
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Build Options
#   comment out to disable the options.
#


@@ 71,5 30,12 @@ UNICODE_ENABLE = YES 		# Unicode

USB = /dev/ttyACM0

OPT_DEFS += -DREDOX_W_PROMICRO
INTERPHASE_UPLOAD_COMMAND = while [ ! -r $(USB) ]; do sleep 1; done; \
                         avrdude -p $(MCU) -c avr109 -U flash:w:$(TARGET).hex -P $(USB)

# # project specific files
SRC = matrix.c

# upload: build
# 	$(REDOX_W_UPLOAD_COMMAND)

M keyboards/redscarf_iiplus/verb/rules.mk => keyboards/redscarf_iiplus/verb/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = qmk-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/redscarf_iiplus/verc/rules.mk => keyboards/redscarf_iiplus/verc/rules.mk +3 -50
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = qmk-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#


@@ 82,4 35,4 @@ HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
CUSTOM_MATRIX = yes
SRC += matrix.c

LAYOUTS = 65_ansi
\ No newline at end of file
LAYOUTS = 65_ansi

M keyboards/reviung34/rules.mk => keyboards/reviung34/rules.mk +2 -14
@@ 1,27 1,16 @@
# MCU name
MCU = atmega32u4


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#


@@ 42,4 31,3 @@ BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)


M keyboards/reviung39/keymaps/default/rules.mk => keyboards/reviung39/keymaps/default/rules.mk +1 -1
@@ 1,1 1,1 @@
RGBLIGHT_ENABLE = yes
\ No newline at end of file
RGBLIGHT_ENABLE = yes

M keyboards/reviung39/keymaps/default_s/rules.mk => keyboards/reviung39/keymaps/default_s/rules.mk +1 -1
@@ 1,1 1,1 @@
RGBLIGHT_ENABLE = yes
\ No newline at end of file
RGBLIGHT_ENABLE = yes

M keyboards/reviung39/rules.mk => keyboards/reviung39/rules.mk +2 -13
@@ 1,27 1,16 @@
# MCU name
MCU = atmega32u4


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/rgbkb/sol/keymaps/default/rules.mk => keyboards/rgbkb/sol/keymaps/default/rules.mk +0 -5
@@ 7,10 7,5 @@
# To keep things clean and tidy, as well as make upgrades easier, only place overrides from the defaults in this file.





# Do not edit past here

include keyboards/$(KEYBOARD)/post_rules.mk


M keyboards/rgbkb/sol/rules.mk => keyboards/rgbkb/sol/rules.mk +8 -13
@@ 1,21 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
F_CPU = 16000000

# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
F_USB = $(F_CPU)

# Bootloader
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = qmk-dfu

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Custom local font file
OPT_DEFS += -DOLED_FONT_H=\"common/glcdfont.c\"


M keyboards/rgbkb/zen/rules.mk => keyboards/rgbkb/zen/rules.mk +11 -7
@@ 1,11 1,15 @@
# Pro Micro or Elite-C
# Automagically converted to Proton-C
# MCU name
MCU = atmega32u4
F_CPU = 16000000
ARCH = AVR8
F_USB = $(F_CPU)
BOOTLOADER = dfu
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina

ifeq ($(strip $(CTPC)), yes)
  CONVERT_TO_PROTON_C=yes

M keyboards/rgbkb/zygomorph/rules.mk => keyboards/rgbkb/zygomorph/rules.mk +8 -39
@@ 1,47 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Bootloader
#     This definition is optional, and if your keyboard supports multiple bootloaders of
#     different sizes, comment this out, and the correct address will be loaded
#     automatically (+60). See bootloader.mk for all options.
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = qmk-dfu

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Build Options
#   change yes to no to disable
#

D keyboards/runner3680/3x6/keymaps/default/rules.mk => keyboards/runner3680/3x6/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/3x7/keymaps/default/rules.mk => keyboards/runner3680/3x7/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/3x8/keymaps/default/rules.mk => keyboards/runner3680/3x8/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/4x6/keymaps/default/rules.mk => keyboards/runner3680/4x6/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/4x7/keymaps/default/rules.mk => keyboards/runner3680/4x7/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/4x8/keymaps/default/rules.mk => keyboards/runner3680/4x8/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/5x6/keymaps/default/rules.mk => keyboards/runner3680/5x6/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/5x7/keymaps/default/rules.mk => keyboards/runner3680/5x7/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/5x8/keymaps/JIS/rules.mk => keyboards/runner3680/5x8/keymaps/JIS/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

D keyboards/runner3680/5x8/keymaps/default/rules.mk => keyboards/runner3680/5x8/keymaps/default/rules.mk +0 -1
@@ 1,1 0,0 @@
RGBLIGHT_ENABLE = no        # Enable WS2812 RGB underlight.

M keyboards/runner3680/rules.mk => keyboards/runner3680/rules.mk +2 -25
@@ 1,39 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
F_CPU = 16000000

# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/s7_elephant/rules.mk => keyboards/s7_elephant/rules.mk +8 -35
@@ 1,41 1,14 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options

M keyboards/scarletbandana/rules.mk => keyboards/scarletbandana/rules.mk +8 -44
@@ 1,52 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# Build Options
#   change yes to no to disable
#

M keyboards/sck/osa/rules.mk => keyboards/sck/osa/rules.mk +0 -4
@@ 1,8 1,6 @@
# MCU name
MCU = atmega32u4



# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina


@@ 13,8 11,6 @@ MCU = atmega32u4
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu



# Build Options
#   change yes to no to disable
#

M keyboards/scythe/rules.mk => keyboards/scythe/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/sentraq/number_pad/rules.mk => keyboards/sentraq/number_pad/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/sentraq/s60_x/default/rules.mk => keyboards/sentraq/s60_x/default/rules.mk +8 -45
@@ 1,52 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# Build Options
#   change yes to no to disable
#


@@ 61,5 25,4 @@ UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6


LAYOUTS = 60_ansi 60_ansi_split_bs_rshift 60_iso 60_hhkb

M keyboards/sentraq/s60_x/rgb/rules.mk => keyboards/sentraq/s60_x/rgb/rules.mk +8 -45
@@ 1,52 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# Build Options
#   change yes to no to disable
#


@@ 66,5 30,4 @@ NKRO_ENABLE = yes          # USB Nkey Rollover - if this doesn't work, see here:
BACKLIGHT_ENABLE = yes     # Enable keyboard backlight functionality
RGBLIGHT_ENABLE = yes      # Enable RGB light


LAYOUTS = 60_ansi 60_ansi_split_bs_rshift 60_iso 60_hhkb

M keyboards/sentraq/s65_plus/rules.mk => keyboards/sentraq/s65_plus/rules.mk +9 -47
@@ 1,53 1,15 @@


# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options
#   change yes to no to disable

M keyboards/sentraq/s65_x/rules.mk => keyboards/sentraq/s65_x/rules.mk +9 -45
@@ 1,51 1,15 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options
#   change yes to no to disable

M keyboards/shiro/rules.mk => keyboards/shiro/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/signum/3_0/elitec/rules.mk => keyboards/signum/3_0/elitec/rules.mk +8 -42
@@ 1,48 1,14 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader
#     This definition is optional, and if your keyboard supports multiple bootloaders of
#     different sizes, comment this out, and the correct address will be loaded
#     automatically (+60). See bootloader.mk for all options.
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options

D keyboards/singa/keymaps/default/rules.mk => keyboards/singa/keymaps/default/rules.mk +0 -0
D keyboards/singa/keymaps/test/rules.mk => keyboards/singa/keymaps/test/rules.mk +0 -0
M keyboards/sirius/unigo66/rules.mk => keyboards/sirius/unigo66/rules.mk +8 -9
@@ 1,17 1,16 @@
# MCU name
MCU = atmega32u4

F_CPU = 16000000

ARCH = AVR8

F_USB = $(F_CPU)

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Interrupt driven control endpoint task
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Build Options
#   comment out to disable the options.
#

M keyboards/sixkeyboard/rules.mk => keyboards/sixkeyboard/rules.mk +2 -2
@@ 1,5 1,3 @@
SRC = matrix.c

# MCU name
MCU = atmega16u2



@@ 29,3 27,5 @@ AUDIO_ENABLE = no
UNICODE_ENABLE = no		# Unicode
BLUETOOTH_ENABLE = no	# Enable Bluetooth with the Adafruit EZ-Key HID
CUSTOM_MATRIX = yes

SRC = matrix.c

M keyboards/smk60/rules.mk => keyboards/smk60/rules.mk +8 -51
@@ 1,58 1,15 @@
# MCU name
MCU = atmega32u4

# project specific files
#SRC =

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu
#OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Do not put the microcontroller into power saving mode
# when we get USB suspend event. We want it to keep updating
# backlight effects.
#OPT_DEFS += -DNO_SUSPEND_POWER_DOWN

# Build Options
#   change yes to no to disable

M keyboards/snagpad/rules.mk => keyboards/snagpad/rules.mk +2 -40
@@ 1,54 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina

# Boot Section Size in *bytes*
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   comment out to disable the options.
#

M keyboards/snampad/rules.mk => keyboards/snampad/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/southpole/rules.mk => keyboards/southpole/rules.mk +10 -40
@@ 1,45 1,15 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = halfkay

# Build Options
#   comment out to disable the options.


@@ 53,4 23,4 @@ SLEEP_LED_ENABLE = no  # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes		# USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no  # Enable keyboard backlight functionality
#AUDIO_ENABLE = no
RGBLIGHT_ENABLE = no
\ No newline at end of file
RGBLIGHT_ENABLE = no

M keyboards/spacetime/rules.mk => keyboards/spacetime/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = caterina


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/speedo/rules.mk => keyboards/speedo/rules.mk +9 -45
@@ 1,51 1,15 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = halfkay

# Build Options
#   change yes to no to disable

M keyboards/standaside/rules.mk => keyboards/standaside/rules.mk +8 -48
@@ 1,53 1,14 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT

# Boot Section Size in *bytes*
#   Teensy halfKay   512
#   Teensy++ halfKay 1024
#   Atmel DFU loader 4096
#   LUFA bootloader  4096
#   USBaspLoader     2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader
#     This definition is optional, and if your keyboard supports multiple bootloaders of
#     different sizes, comment this out, and the correct address will be loaded 
#     automatically (+60). See bootloader.mk for all options.
# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel_dfu

# Build Options


@@ 70,4 31,3 @@ AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
RGBLIGHT_ENABLE = yes       # Enable RGB underlighting support


M keyboards/stella/rules.mk => keyboards/stella/rules.mk +3 -4
@@ 1,17 1,16 @@
# MCU name
MCU = atmega32u4


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# Build Options
#   change yes to no to disable
#


@@ 34,4 33,4 @@ FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)

# Supported layouts
LAYOUTS = tkl_ansi tkl_iso
\ No newline at end of file
LAYOUTS = tkl_ansi tkl_iso

M keyboards/suihankey/alpha/rules.mk => keyboards/suihankey/alpha/rules.mk +1 -82
@@ 1,82 1,1 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = lite    # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no       # Mouse keys(+4700)
EXTRAKEY_ENABLE = no       # Audio control and System control(+450)
CONSOLE_ENABLE = no        # Console for debug(+400)
COMMAND_ENABLE = no        # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no       # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no            # USB Nkey Rollover
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = yes        # Enable keyboard RGB underglow
MIDI_ENABLE = no            # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
OLED_DRIVER_ENABLE = yes
SPLIT_KEYBOARD = no
RGBLIGHT_ENABLE = yes

M keyboards/suihankey/rev1/rules.mk => keyboards/suihankey/rev1/rules.mk +1 -82
@@ 1,82 1,1 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = lite    # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no       # Mouse keys(+4700)
EXTRAKEY_ENABLE = no       # Audio control and System control(+450)
CONSOLE_ENABLE = no        # Console for debug(+400)
COMMAND_ENABLE = no        # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no       # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no            # USB Nkey Rollover
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = yes        # Enable keyboard RGB underglow
MIDI_ENABLE = no            # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
OLED_DRIVER_ENABLE = yes
SPLIT_KEYBOARD = no
RGBLIGHT_ENABLE = yes

M keyboards/suihankey/rules.mk => keyboards/suihankey/rules.mk +2 -49
@@ 1,63 1,16 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#

M keyboards/suihankey/split/alpha/rules.mk => keyboards/suihankey/split/alpha/rules.mk +1 -82
@@ 1,82 1,1 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = lite    # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no       # Mouse keys(+4700)
EXTRAKEY_ENABLE = no       # Audio control and System control(+450)
CONSOLE_ENABLE = no        # Console for debug(+400)
COMMAND_ENABLE = no        # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no       # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no            # USB Nkey Rollover
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = yes        # Enable keyboard RGB underglow
MIDI_ENABLE = no            # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
OLED_DRIVER_ENABLE = no
SPLIT_KEYBOARD = yes
RGBLIGHT_ENABLE = yes

M keyboards/suihankey/split/rev1/rules.mk => keyboards/suihankey/split/rev1/rules.mk +1 -82
@@ 1,82 1,1 @@
# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000


#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   atmega32a    bootloadHID
BOOTLOADER = atmel-dfu


# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
#   Teensy halfKay      512
#   Teensy++ halfKay    1024
#   Atmel DFU loader    4096
#   LUFA bootloader     4096
#   USBaspLoader        2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096


# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = lite    # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no       # Mouse keys(+4700)
EXTRAKEY_ENABLE = no       # Audio control and System control(+450)
CONSOLE_ENABLE = no        # Console for debug(+400)
COMMAND_ENABLE = no        # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no       # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no            # USB Nkey Rollover
BACKLIGHT_ENABLE = no       # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = yes        # Enable keyboard RGB underglow
MIDI_ENABLE = no            # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6
FAUXCLICKY_ENABLE = no      # Use buzzer to emulate clicky switches
HD44780_ENABLE = no 		# Enable support for HD44780 based LCDs (+400)
OLED_DRIVER_ENABLE = no
SPLIT_KEYBOARD = yes
RGBLIGHT_ENABLE = yes

D keyboards/sx60/keymaps/default/rules.mk => keyboards/sx60/keymaps/default/rules.mk +0 -0
M keyboards/sx60/rules.mk => keyboards/sx60/rules.mk +13 -43
@@ 1,49 1,15 @@
# # project specific files
SRC =  twimaster.c \
  matrix.c

# MCU name
MCU = atmega32u4

# Processor frequency.
#     This will define a symbol, F_CPU, in all source code files equal to the
#     processor frequency in Hz. You can then use this symbol in your source code to
#     calculate timings. Do NOT tack on a 'UL' at the end, this will be done
#     automatically to create a 32-bit value in your source code.
#
#     This will be an integer division of F_USB below, as it is sourced by
#     F_USB after it has run through any CPU prescalers. Note that this value
#     does not *change* the processor frequency - it should merely be updated to
#     reflect the processor speed set externally so that the code can use accurate
#     software delays.
F_CPU = 16000000

#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8

# Input clock frequency.
#     This will define a symbol, F_USB, in all source code files equal to the
#     input clock frequency (before any prescaling is performed) in Hz. This value may
#     differ from F_CPU if prescaling is used on the latter, and is required as the
#     raw input clock is fed directly to the PLL sections of the AVR for high speed
#     clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
#     at the end, this will be done automatically to create a 32-bit value in your
#     source code.
#
#     If no clock division is performed on the input clock inside the AVR (via the
#     CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)

# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT


# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=4096

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu

# Build Options
#   comment out to disable the options.


@@ 59,3 25,7 @@ BACKLIGHT_ENABLE ?= yes  # Enable keyboard backlight functionality
AUDIO_ENABLE ?= no
RGBLIGHT_ENABLE ?= no
CUSTOM_MATRIX ?= yes

# project specific files
SRC =  twimaster.c \
  matrix.c