~ruther/qmk_firmware

6380f8319057d33bb6d07c66789867e49c634504 — Jack Humbert 7 years ago 76e0d23
refactor, non-working
M drivers/avr/i2c_master.c => drivers/avr/i2c_master.c +82 -51
@@ 19,7 19,7 @@ void i2c_init(void)
  //TWBR = 10;
}

i2c_status_t i2c_start(uint8_t address, uint8_t timeout)
i2c_status_t i2c_start(uint8_t address, uint16_t timeout)
{
	// reset TWI control register
	TWCR = 0;


@@ 28,13 28,13 @@ i2c_status_t i2c_start(uint8_t address, uint8_t timeout)

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
    if (timeout && (timer_read() - timeout_timer) > timeout) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

	// check if the start condition was successfully transmitted
	if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return 1; }
	if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return I2C_STATUS_ERROR; }

	// load slave address into data register
	TWDR = address;


@@ 43,19 43,19 @@ i2c_status_t i2c_start(uint8_t address, uint8_t timeout)

  timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
    if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

	// check if the device has acknowledged the READ / WRITE mode
	uint8_t twst = TW_STATUS & 0xF8;
	if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
	if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return I2C_STATUS_ERROR;

	return 0;
	return I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_write(uint8_t data, uint8_t timeout)
i2c_status_t i2c_write(uint8_t data, uint16_t timeout)
{
	// load data into data register
	TWDR = data;


@@ 64,17 64,17 @@ i2c_status_t i2c_write(uint8_t data, uint8_t timeout)

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
    if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

	if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return 1; }
	if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return I2C_STATUS_ERROR; }

	return 0;
	return I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_read_ack(uint8_t timeout)
int16_t i2c_read_ack(uint16_t timeout)
{

	// start TWI module and acknowledge data after reception


@@ 82,7 82,7 @@ i2c_status_t i2c_read_ack(uint8_t timeout)

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
    if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }


@@ 91,7 91,7 @@ i2c_status_t i2c_read_ack(uint8_t timeout)
	return TWDR;
}

i2c_status_t i2c_read_nack(uint8_t timeout)
int16_t i2c_read_nack(uint16_t timeout)
{

	// start receiving without acknowledging reception


@@ 99,7 99,7 @@ i2c_status_t i2c_read_nack(uint8_t timeout)

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
    if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }


@@ 108,81 108,112 @@ i2c_status_t i2c_read_nack(uint8_t timeout)
	return TWDR;
}

i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length)
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{
	if (i2c_start(address | I2C_WRITE)) return 1;
  i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
	if (status) return status;

	for (uint16_t i = 0; i < length; i++)
	{
		if (i2c_write(data[i])) return 1;
	for (uint16_t i = 0; i < length; i++) {
		status = i2c_write(data[i], timeout);
    if (status) return status;
	}

	i2c_stop();
	status = i2c_stop(timeout);
  if (status) return status;

	return 0;
	return I2C_STATUS_SUCCESS;
}

uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length)
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{
	if (i2c_start(address | I2C_READ)) return 1;

	for (uint16_t i = 0; i < (length-1); i++)
	{
		data[i] = i2c_read_ack();
  i2c_status_t status = i2c_start(address | I2C_READ, timeout);
	if (status) return status;

	for (uint16_t i = 0; i < (length-1); i++) {
    status = i2c_read_ack(timeout);
    if (status >= 0) {
      data[i] = status;
    } else {
      return status;
    }
	}
	data[(length-1)] = i2c_read_nack();

	i2c_stop();
  status = i2c_read_nack(timeout);
  if (status >= 0 ) {
    data[(length-1)] = status;
  } else {
    return status;
  }

  status = i2c_stop(timeout);
  if (status) return status;

	return 0;
	return I2C_STATUS_SUCCESS;
}

uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length)
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{
	if (i2c_start(devaddr | 0x00)) return 1;
  i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
	if (status) return status;

	i2c_write(regaddr);
	status = i2c_write(regaddr, timeout);
  if (status) return status;

	for (uint16_t i = 0; i < length; i++)
	{
		if (i2c_write(data[i])) return 1;
	for (uint16_t i = 0; i < length; i++) {
    status = i2c_write(data[i], timeout);
		if (status) return status;
	}

	i2c_stop();
	status = i2c_stop(timeout);
  if (status) return status;

	return 0;
	return I2C_STATUS_SUCCESS;
}

uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length)
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{
	if (i2c_start(devaddr)) return 1;
  i2c_status_t status = i2c_start(devaddr, timeout);
	if (status) return status;

	i2c_write(regaddr);
  status = i2c_write(regaddr, timeout);
  if (status) return status;

	if (i2c_start(devaddr | 0x01)) return 1;
  status = i2c_start(devaddr | 0x01, timeout);
	if (status) return status;

	for (uint16_t i = 0; i < (length-1); i++)
	{
		data[i] = i2c_read_ack();
	for (uint16_t i = 0; i < (length-1); i++) {
		status = i2c_read_ack(timeout);
    if (status >= 0) {
      data[i] = status;
    } else {
      return status;
    }
	}
	data[(length-1)] = i2c_read_nack();

	i2c_stop();
  status = i2c_read_nack(timeout);
  if (status >= 0 ) {
    data[(length-1)] = status;
  } else {
    return status;
  }

  status = i2c_stop(timeout);
  if (status) return status;

	return 0;
	return I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_stop(uint8_t timeout)
i2c_status_t i2c_stop(uint16_t timeout)
{
	// transmit STOP condition
	TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t timeout_timer = timer_read();
  while(TWCR & (1<<TWSTO)) {
      if (timeout && (timer_read() - timeout_timer) > I2C_TIMEOUT) {
    if (timeout && ((timer_read() - timeout_timer) > timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

  return 0;
  return I2C_STATUS_SUCCESS;
}

M drivers/avr/i2c_master.h => drivers/avr/i2c_master.h +13 -12
@@ 8,20 8,21 @@
#define I2C_READ 0x01
#define I2C_WRITE 0x00

typedef i2c_status_t int16_t
#define I2C_STATUS_TIMEOUT (-1)
typedef int16_t i2c_status_t;

#define I2C_NO_TIMEOUT 0
#define I2C_STATUS_SUCCESS (0)
#define I2C_STATUS_ERROR   (-1)
#define I2C_STATUS_TIMEOUT (-2)

void i2c_init(void);
i2c_status_t i2c_start(uint8_t address, uint8_t timeout);
i2c_status_t i2c_write(uint8_t data, uint8_t timeout);
i2c_status_t i2c_read_ack(uint8_t timeout);
i2c_status_t i2c_read_nack(uint8_t timeout);
uint8_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length);
uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length);
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length);
uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length);
i2c_status_t i2c_stop(uint8_t timeout);
i2c_status_t i2c_start(uint8_t address, uint16_t timeout);
i2c_status_t i2c_write(uint8_t data, uint16_t timeout);
int16_t i2c_read_ack(uint16_t timeout);
int16_t i2c_read_nack(uint16_t timeout);
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_stop(uint16_t timeout);

#endif // I2C_MASTER_H

M drivers/avr/is31fl3731.c => drivers/avr/is31fl3731.c +47 -40
@@ 49,6 49,14 @@
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B    // helpfully called 'page nine'

#ifndef ISSI_TIMEOUT
  #define ISSI_TIMEOUT 100
#endif

#ifndef ISSI_PERSISTENCE
  #define ISSI_PERSISTENCE 0
#endif

// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20];



@@ 78,100 86,104 @@ bool g_led_control_registers_update_required = false;
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09


uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
	g_twi_transfer_buffer[0] = reg;
	g_twi_transfer_buffer[1] = data;

	//Transmit data until succesful
  //while(i2c_transmit(addr << 1, g_twi_transfer_buffer,2) != 0);
  return i2c_transmit(addr << 1, g_twi_transfer_buffer,2);
  #if ISSI_PERSISTENCE > 0
    for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
      if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0)
        break;
    }
  #else
    i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT);
  #endif
}

uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
  uint8_t ret = 0;
	// assumes bank is already selected

	// transmit PWM registers in 9 transfers of 16 bytes
	// g_twi_transfer_buffer[] is 20 bytes

	// iterate over the pwm_buffer contents at 16 byte intervals
	for ( int i = 0; i < 144; i += 16 )
	{
	for ( int i = 0; i < 144; i += 16 ) {
		// set the first register, e.g. 0x24, 0x34, 0x44, etc.
		g_twi_transfer_buffer[0] = 0x24 + i;
		// copy the data from i to i+15
		// device will auto-increment register for data after the first byte
		// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
		for ( int j = 0; j < 16; j++ )
		{
		for ( int j = 0; j < 16; j++ ) {
			g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
		}

		//Transmit buffer until succesful
		//while(i2c_transmit(addr << 1, g_twi_transfer_buffer,17) != 0);
    ret |= i2c_transmit(addr << 1, g_twi_transfer_buffer, 17);
    #if ISSI_PERSISTENCE > 0
      for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
        if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0)
          break;
      }
    #else
      i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT);
    #endif
	}
  return ret;
}

uint8_t IS31FL3731_init( uint8_t addr )
void IS31FL3731_init( uint8_t addr )
{
  uint8_t ret = 0;
	// In order to avoid the LEDs being driven with garbage data
	// in the LED driver's PWM registers, first enable software shutdown,
	// then set up the mode and other settings, clear the PWM registers,
	// then disable software shutdown.

	// select "function register" bank
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// enable software shutdown
	ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
	// this delay was copied from other drivers, might not be needed
	_delay_ms( 10 );

	// picture mode
	ret |= IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
	IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
	// display frame 0
	ret |= IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
	IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
	// audio sync off
	ret |= IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
	IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );

	// select bank 0
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );

	// turn off all LEDs in the LED control register
	for ( int i = 0x00; i <= 0x11; i++ )
	{
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// turn off all LEDs in the blink control register (not really needed)
	for ( int i = 0x12; i <= 0x23; i++ )
	{
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// set PWM on all LEDs to 0
	for ( int i = 0x24; i <= 0xB3; i++ )
	{
		ret |= IS31FL3731_write_register( addr, i, 0x00 );
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// select "function register" bank
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// disable software shutdown
	ret |= IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );

	// select bank 0 and leave it selected.
	// most usage after initialization is just writing PWM buffers in bank 0
	// as there's not much point in double-buffering
	ret |= IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );

  return ret;
}

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )


@@ 224,32 236,27 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b

	g_led_control_registers_update_required = true;


}

uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
  uint8_t ret = 0;
	if ( g_pwm_buffer_update_required )
	{
		ret |= IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
		ret |= IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
		IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
		IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
	}
	g_pwm_buffer_update_required = false;
  return ret;
}

uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
  uint8_t ret = 0;
	if ( g_led_control_registers_update_required )
	{
		for ( int i=0; i<18; i++ )
		{
			ret |= IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
			ret |= IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
			IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
			IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
		}
	}
  return ret;
}


M drivers/avr/is31fl3731.h => drivers/avr/is31fl3731.h +5 -5
@@ 31,9 31,9 @@ typedef struct is31_led {

extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];

uint8_t IS31FL3731_init( uint8_t addr );
uint8_t IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
uint8_t IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );
void IS31FL3731_init( uint8_t addr );
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );


@@ 44,8 44,8 @@ void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, b
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
uint8_t IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
uint8_t IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );

#define C1_1  0x24
#define C1_2  0x25

M keyboards/ergodox_ez/config.h => keyboards/ergodox_ez/config.h +0 -2
@@ 138,6 138,4 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
//#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE

#define I2C_TIMEOUT 1000

#endif

M keyboards/ergodox_ez/ergodox_ez.c => keyboards/ergodox_ez/ergodox_ez.c +18 -18
@@ 24,7 24,7 @@ extern inline void ergodox_led_all_set(uint8_t n);


bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20;
i2c_status_t mcp23018_status = 0x20;

void matrix_init_kb(void) {
   // keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md")


@@ 125,23 125,23 @@ uint8_t init_mcp23018(void) {
    // - unused  : input  : 1
    // - input   : input  : 1
    // - driving : output : 0
    mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(IODIRA);            if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111);        if (mcp23018_status) goto out;
    i2c_stop();
    mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(IODIRA, 0);            if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000, 0);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111, 0);        if (mcp23018_status) goto out;
    i2c_stop(0);

    // set pull-up
    // - unused  : on  : 1
    // - input   : on  : 1
    // - driving : off : 0
    mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(GPPUA);             if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(GPPUA, 0);             if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000, 0);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111, 0);        if (mcp23018_status) goto out;

out:
    i2c_stop();
    i2c_stop(0);

#ifdef LEFT_LEDS
    if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update();


@@ 165,22 165,22 @@ uint8_t ergodox_left_leds_update(void) {
    // - unused  : hi-Z : 1
    // - input   : hi-Z : 1
    // - driving : hi-Z : 1
    mcp23018_status = i2c_start(I2C_ADDR_WRITE);
    mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);
    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(OLATA);
    mcp23018_status = i2c_write(OLATA, 0);
    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b11111111
                                & ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT)
                                );
                                & ~(ergodox_left_led_3<<LEFT_LED_3_SHIFT),
                                0);
    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b11111111
                                & ~(ergodox_left_led_2<<LEFT_LED_2_SHIFT)
                                & ~(ergodox_left_led_1<<LEFT_LED_1_SHIFT)
                                );
                                & ~(ergodox_left_led_1<<LEFT_LED_1_SHIFT),
                                0);
    if (mcp23018_status) goto out;

 out:
    i2c_stop();
    i2c_stop(0);
    return mcp23018_status;
}
#endif

M keyboards/ergodox_ez/ergodox_ez.h => keyboards/ergodox_ez/ergodox_ez.h +1 -1
@@ 23,7 23,7 @@
#define OLATA           0x14            // output latch register
#define OLATB           0x15

extern uint8_t mcp23018_status;
extern i2c_status_t mcp23018_status;

void init_ergodox(void);
void ergodox_blink_all_leds(void);

M keyboards/ergodox_ez/matrix.c => keyboards/ergodox_ez/matrix.c +10 -10
@@ 295,13 295,13 @@ static matrix_row_t read_cols(uint8_t row)
            return 0;
        } else {
            uint8_t data = 0;
            mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOB);             if (mcp23018_status) goto out;
            mcp23018_status = i2c_start(I2C_ADDR_READ);     if (mcp23018_status) goto out;
            data = i2c_read_nack();
            data = ~data;
            mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);    if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOB, 0);             if (mcp23018_status) goto out;
            mcp23018_status = i2c_start(I2C_ADDR_READ, 0);     if (mcp23018_status) goto out;
            mcp23018_status = i2c_read_nack(0);                if (mcp23018_status < 0) goto out;
            data = ~((uint8_t)mcp23018_status);
        out:
            i2c_stop();
            i2c_stop(0);
            return data;
        }
    } else {


@@ 350,11 350,11 @@ static void select_row(uint8_t row)
        } else {
            // set active row low  : 0
            // set other rows hi-Z : 1
            mcp23018_status = i2c_start(I2C_ADDR_WRITE);        if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOA);                 if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(0xFF & ~(1<<row));      if (mcp23018_status) goto out;
            mcp23018_status = i2c_start(I2C_ADDR_WRITE, 0);        if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOA, 0);                 if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(0xFF & ~(1<<row), 0);      if (mcp23018_status) goto out;
        out:
            i2c_stop();
            i2c_stop(0);
        }
    } else {
        // select on teensy

M quantum/rgb_matrix.c => quantum/rgb_matrix.c +2 -7
@@ 102,13 102,8 @@ void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t
}

void rgb_matrix_update_pwm_buffers(void) {
    uint8_t ret = IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    ret |= IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    if (ret == 2) {
      wait_ms(1000);
      i2c_stop();
      rgb_matrix_setup_drivers();
    }
    IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}

void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {