~ruther/qmk_firmware

3cb216f3816b9f0b2403ae5f015a6af3febc866b — MechMerlin 5 years ago 23cac6a
[Keyboard] New Keyboard: Exent (#6985)

* initial commit

* thank you mr keebs for making this easy. Added 65_ansi macro made from mrkeebs kle2qmk tool.

* split backspace requires an additional row

* change k43 to k42

* add in split space bar support for LAYOUT_all

* add QMK Configurator support

* make default keymap more usable

* update readme

* Update keyboards/exent/info.json

Co-Authored-By: noroadsleft <18669334+noroadsleft@users.noreply.github.com>

* Update keyboards/exent/keymaps/default/keymap.c

Co-Authored-By: fauxpark <fauxpark@gmail.com>

* Update keyboards/exent/keymaps/default/keymap.c

Co-Authored-By: fauxpark <fauxpark@gmail.com>

* Update keyboards/exent/rules.mk

Co-Authored-By: noroadsleft <18669334+noroadsleft@users.noreply.github.com>
A keyboards/exent/config.h => keyboards/exent/config.h +53 -0
@@ 0,0 1,53 @@
/*
Copyright 2019 mechmerlin

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#pragma once

#include "config_common.h"

#define VENDOR_ID 0x20A0
#define PRODUCT_ID 0x422D
#define DEVICE_VER 0x0001
#define MANUFACTURER Quadcube
#define PRODUCT Exent
#define DESCRIPTION 65% Keyboard

#define RGBLED_NUM 18

#define MATRIX_ROWS 7
#define MATRIX_COLS 14

//                         0   1   2   3   4   5   6   7   8   9   A   B   C   D
#define MATRIX_ROW_PINS { B0, B1, B2, B3, B4, B5, B6 }
#define MATRIX_COL_PINS { D7, C2, C3, C4, C5, C6, C7, A7, A6, A5, A4, A3, A1, A0 }
#define UNUSED_PINS 

#define DIODE_DIRECTION COL2ROW
#define DEBOUNCE 5

#define BACKLIGHT_LEVELS 1
#define RGBLIGHT_ANIMATIONS

#define NO_UART 1

/* key combination for magic key command */
/* defined by default; to change, uncomment and set to the combination you want */
// #define IS_COMMAND() (get_mods() == MOD_MASK_SHIFT)

/* Bootmagic Lite key configuration */
// #define BOOTMAGIC_LITE_ROW 0
// #define BOOTMAGIC_LITE_COLUMN 0

A keyboards/exent/exent.c => keyboards/exent/exent.c +90 -0
@@ 0,0 1,90 @@
/* Copyright 2019 mechmerlin
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "exent.h"

#ifdef RGBLIGHT_ENABLE

#    include <string.h>
#    include "i2c_master.h"
#    include "rgblight.h"

extern rgblight_config_t rgblight_config;

void matrix_init_kb(void) {
    i2c_init();
    // call user level keymaps, if any
    matrix_init_user();
}

// custom RGB driver
void rgblight_set(void) {
    if (!rgblight_config.enable) {
        memset(led, 0, 3 * RGBLED_NUM);
    }

    i2c_transmit(0xb0, (uint8_t*)led, 3 * RGBLED_NUM, 100);
}

bool rgb_init = false;

void matrix_scan_kb(void) {
    // if LEDs were previously on before poweroff, turn them back on
    if (rgb_init == false && rgblight_config.enable) {
        i2c_transmit(0xb0, (uint8_t*)led, 3 * RGBLED_NUM, 100);
        rgb_init = true;
    }

    rgblight_task();
    matrix_scan_user();
}

#endif

// Optional override functions below.
// You can leave any or all of these undefined.
// These are only required if you want to perform custom actions.

/*

void matrix_init_kb(void) {
  // put your keyboard start-up code here
  // runs once when the firmware starts up

  matrix_init_user();
}

void matrix_scan_kb(void) {
  // put your looping keyboard code here
  // runs every cycle (a lot)

  matrix_scan_user();
}

bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
  // put your per-action keyboard code here
  // runs for every action, just before processing by the firmware

  return process_record_user(keycode, record);
}

void led_set_kb(uint8_t usb_led) {
  // put your keyboard LED indicator (ex: Caps Lock LED) toggling code here

  led_set_user(usb_led);
}

*/

A keyboards/exent/exent.h => keyboards/exent/exent.h +68 -0
@@ 0,0 1,68 @@
/* Copyright 2019 mechmerlin
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#pragma once

#include "quantum.h"

#define ___ KC_NO

#define LAYOUT_all( \
    k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d, k6d, k53,  \
    k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c, k1d, k52,       \
    k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2c, k2d, k51,       \
    k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d, k50,       \
    k40, k41, k42, k44, k45, k46, k47, k48, k49, k4b, k4c, k4d                       \
){ \
    { k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d },  \
    { k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c, k1d },  \
    { k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2c, k2d },  \
    { k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d },  \
    { k40, k41, k42, ___, k44, k45, k46, k47, k48, k49, ___, k4b, k4c, k4d },  \
    { k50, k51, k52, k53, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___ },  \
    { ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, k6d }   \
}

#define LAYOUT_65_ansi( \
    k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d, k53,  \
    k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c, k1d, k52,  \
    k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2d, k51,       \
    k30, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d, k50,       \
    k40, k41, k42, k45, k47, k48, k49, k4b, k4c, k4d                            \
){ \
    { k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d },  \
    { k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c, k1d },  \
    { k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, ___, k2d },  \
    { k30, ___, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d },  \
    { k40, k41, k42, ___, ___, k45, ___, k47, k48, k49, ___, k4b, k4c, k4d },  \
    { k50, k51, k52, k53, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___ },  \
    { ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___ }   \
}

#define LAYOUT_65_iso( \
    k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d, k53,  \
    k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c,  k52,      \
    k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2c, k2d, k51,  \
    k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d, k50,  \
    k40, k41, k42, k45, k47, k48, k49, k4b, k4c, k4d                            \
){ \
    { k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, k0c, k0d },  \
    { k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1a, k1b, k1c, ___ },  \
    { k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2a, k2b, k2c, k2d },  \
    { k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3a, k3b, k3c, k3d },  \
    { k40, k41, k42, ___, ___, k45, ___, k47, k48, k49, ___, k4b, k4c, k4d },  \
    { k50, k51, k52, k53, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___ },  \
    { ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___, ___ }   \
}

A keyboards/exent/info.json => keyboards/exent/info.json +20 -0
@@ 0,0 1,20 @@
{
    "keyboard_name": "Exent", 
    "url": "", 
    "maintainer": "qmk", 
    "width": 16, 
    "height": 5, 
    "layouts": {
        "LAYOUT_all": {
            "layout": [{"x":0, "y":0}, {"x":1, "y":0}, {"x":2, "y":0}, {"x":3, "y":0}, {"x":4, "y":0}, {"x":5, "y":0}, {"x":6, "y":0}, {"x":7, "y":0}, {"x":8, "y":0}, {"x":9, "y":0}, {"x":10, "y":0}, {"x":11, "y":0}, {"x":12, "y":0}, {"x":13, "y":0}, {"x":14, "y":0}, {"x":15, "y":0}, {"x":0, "y":1, "w":1.5}, {"x":1.5, "y":1}, {"x":2.5, "y":1}, {"x":3.5, "y":1}, {"x":4.5, "y":1}, {"x":5.5, "y":1}, {"x":6.5, "y":1}, {"x":7.5, "y":1}, {"x":8.5, "y":1}, {"x":9.5, "y":1}, {"x":10.5, "y":1}, {"x":11.5, "y":1}, {"x":12.5, "y":1}, {"x":13.5, "y":1, "w":1.5}, {"x":15, "y":1}, {"x":0, "y":2, "w":1.75}, {"x":1.75, "y":2}, {"x":2.75, "y":2}, {"x":3.75, "y":2}, {"x":4.75, "y":2}, {"x":5.75, "y":2}, {"x":6.75, "y":2}, {"x":7.75, "y":2}, {"x":8.75, "y":2}, {"x":9.75, "y":2}, {"x":10.75, "y":2}, {"x":11.75, "y":2}, {"x":12.75, "y":2}, {"x":13.75, "y":2, "w":1.25}, {"x":15, "y":2}, {"x":0, "y":3, "w":1.25}, {"x":1.25, "y":3}, {"x":2.25, "y":3}, {"x":3.25, "y":3}, {"x":4.25, "y":3}, {"x":5.25, "y":3}, {"x":6.25, "y":3}, {"x":7.25, "y":3}, {"x":8.25, "y":3}, {"x":9.25, "y":3}, {"x":10.25, "y":3}, {"x":11.25, "y":3}, {"x":12.25, "y":3, "w":1.75}, {"x":14, "y":3}, {"x":15, "y":3}, {"x":0, "y":4, "w":1.25}, {"x":1.25, "y":4, "w":1.25}, {"x":2.5, "y":4, "w":1.25}, {"x":3.75, "y":4, "w":2.25}, {"x":6, "y":4, "w":1.25}, {"x":7.25, "y":4, "w":2.75}, {"x":10, "y":4}, {"x":11, "y":4}, {"x":12, "y":4}, {"x":13, "y":4}, {"x":14, "y":4}, {"x":15, "y":4}]
        }, 

        "LAYOUT_65_ansi": {
            "layout": [{"x":0, "y":0}, {"x":1, "y":0}, {"x":2, "y":0}, {"x":3, "y":0}, {"x":4, "y":0}, {"x":5, "y":0}, {"x":6, "y":0}, {"x":7, "y":0}, {"x":8, "y":0}, {"x":9, "y":0}, {"x":10, "y":0}, {"x":11, "y":0}, {"x":12, "y":0}, {"x":13, "y":0, "w":2}, {"x":15, "y":0}, {"x":0, "y":1, "w":1.5}, {"x":1.5, "y":1}, {"x":2.5, "y":1}, {"x":3.5, "y":1}, {"x":4.5, "y":1}, {"x":5.5, "y":1}, {"x":6.5, "y":1}, {"x":7.5, "y":1}, {"x":8.5, "y":1}, {"x":9.5, "y":1}, {"x":10.5, "y":1}, {"x":11.5, "y":1}, {"x":12.5, "y":1}, {"x":13.5, "y":1, "w":1.5}, {"x":15, "y":1}, {"x":0, "y":2, "w":1.75}, {"x":1.75, "y":2}, {"x":2.75, "y":2}, {"x":3.75, "y":2}, {"x":4.75, "y":2}, {"x":5.75, "y":2}, {"x":6.75, "y":2}, {"x":7.75, "y":2}, {"x":8.75, "y":2}, {"x":9.75, "y":2}, {"x":10.75, "y":2}, {"x":11.75, "y":2}, {"x":12.75, "y":2, "w":2.25}, {"x":15, "y":2}, {"x":0, "y":3, "w":2.25}, {"x":2.25, "y":3}, {"x":3.25, "y":3}, {"x":4.25, "y":3}, {"x":5.25, "y":3}, {"x":6.25, "y":3}, {"x":7.25, "y":3}, {"x":8.25, "y":3}, {"x":9.25, "y":3}, {"x":10.25, "y":3}, {"x":11.25, "y":3}, {"x":12.25, "y":3, "w":1.75}, {"x":14, "y":3}, {"x":15, "y":3}, {"x":0, "y":4, "w":1.25}, {"x":1.25, "y":4, "w":1.25}, {"x":2.5, "y":4, "w":1.25}, {"x":3.75, "y":4, "w":6.25}, {"x":10, "y":4}, {"x":11, "y":4}, {"x":12, "y":4}, {"x":13, "y":4}, {"x":14, "y":4}, {"x":15, "y":4}]
        },

        "LAYOUT_65_iso": {
            "layout": [{"x":0, "y":0}, {"x":1, "y":0}, {"x":2, "y":0}, {"x":3, "y":0}, {"x":4, "y":0}, {"x":5, "y":0}, {"x":6, "y":0}, {"x":7, "y":0}, {"x":8, "y":0}, {"x":9, "y":0}, {"x":10, "y":0}, {"x":11, "y":0}, {"x":12, "y":0}, {"x":13, "y":0, "w":2}, {"x":15, "y":0}, {"x":0, "y":1, "w":1.5}, {"x":1.5, "y":1}, {"x":2.5, "y":1}, {"x":3.5, "y":1}, {"x":4.5, "y":1}, {"x":5.5, "y":1}, {"x":6.5, "y":1}, {"x":7.5, "y":1}, {"x":8.5, "y":1}, {"x":9.5, "y":1}, {"x":10.5, "y":1}, {"x":11.5, "y":1}, {"x":12.5, "y":1}, {"x":15, "y":1}, {"x":0, "y":2, "w":1.75}, {"x":1.75, "y":2}, {"x":2.75, "y":2}, {"x":3.75, "y":2}, {"x":4.75, "y":2}, {"x":5.75, "y":2}, {"x":6.75, "y":2}, {"x":7.75, "y":2}, {"x":8.75, "y":2}, {"x":9.75, "y":2}, {"x":10.75, "y":2}, {"x":11.75, "y":2}, {"x":12.75, "y":2}, {"x":13.75, "y":1, "w":1.25, "h":2}, {"x":15, "y":2}, {"x":0, "y":3, "w":1.25}, {"x":1.25, "y":3}, {"x":2.25, "y":3}, {"x":3.25, "y":3}, {"x":4.25, "y":3}, {"x":5.25, "y":3}, {"x":6.25, "y":3}, {"x":7.25, "y":3}, {"x":8.25, "y":3}, {"x":9.25, "y":3}, {"x":10.25, "y":3}, {"x":11.25, "y":3}, {"x":12.25, "y":3, "w":1.75}, {"x":14, "y":3}, {"x":15, "y":3}, {"x":0, "y":4, "w":1.25}, {"x":1.25, "y":4, "w":1.25}, {"x":2.5, "y":4, "w":1.25}, {"x":3.75, "y":4, "w":6.25}, {"x":10, "y":4}, {"x":11, "y":4}, {"x":12, "y":4}, {"x":13, "y":4}, {"x":14, "y":4}, {"x":15, "y":4}]
        }
    }
}

A keyboards/exent/keymaps/default/config.h => keyboards/exent/keymaps/default/config.h +19 -0
@@ 0,0 1,19 @@
/* Copyright 2019 mechmerlin
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

// place overrides here

A keyboards/exent/keymaps/default/keymap.c => keyboards/exent/keymaps/default/keymap.c +18 -0
@@ 0,0 1,18 @@
#include QMK_KEYBOARD_H

const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
    /* layer 0: qwerty */
    [0] = LAYOUT_65_ansi(
        KC_ESC,  KC_1,    KC_2,   KC_3,   KC_4,   KC_5,   KC_6,   KC_7,   KC_8,   KC_9,    KC_0,    KC_MINS, KC_EQL,  KC_BSPC, KC_HOME,
        KC_TAB,  KC_Q,    KC_W,   KC_E,   KC_R,   KC_T,   KC_Y,   KC_U,   KC_I,   KC_O,    KC_P,    KC_LBRC, KC_RBRC, KC_BSLS, KC_PGUP,
        KC_CAPS, KC_A,    KC_S,   KC_D,   KC_F,   KC_G,   KC_H,   KC_J,   KC_K,   KC_L,    KC_SCLN, KC_QUOT, KC_ENT,  KC_PGDN,
        KC_LSFT, KC_Z,    KC_X,   KC_C,   KC_V,   KC_B,   KC_N,   KC_M,   KC_COMM, KC_DOT, KC_SLSH, KC_RSFT,          KC_UP,   KC_END,
        KC_LCTL, KC_LGUI, KC_LALT,                KC_SPC,                                  MO(1), KC_RGUI, KC_RCTL, KC_LEFT, KC_DOWN, KC_RGHT), 

    [1] = LAYOUT_65_ansi(
        KC_GRV,  KC_F1,    KC_F2,   KC_F3,   KC_F4,   KC_F5,   KC_F6,   KC_F7,   KC_F8,   KC_F9,   KC_F10,  KC_F11,  KC_F12,  KC_DEL,  KC_TRNS,
        BL_TOGG, BL_STEP,  BL_INC,  BL_DEC,  RESET,   KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
        RGB_TOG, RGB_MOD,  RGB_HUI, RGB_SAI, RGB_VAI, RGB_SPI, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
        KC_TRNS, RGB_RMOD, RGB_HUD, RGB_SAD, RGB_VAD, RGB_SPD, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,          KC_TRNS, KC_TRNS,
        KC_TRNS, KC_TRNS,  KC_TRNS,                KC_TRNS,                               KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS), 
    };

A keyboards/exent/keymaps/default/readme.md => keyboards/exent/keymaps/default/readme.md +1 -0
@@ 0,0 1,1 @@
# The default keymap for exent

A keyboards/exent/readme.md => keyboards/exent/readme.md +19 -0
@@ 0,0 1,19 @@
# exent

65% custom keyboard with large bezels. 

Keyboard Maintainer: [mechmerlin](https://github.com/mechmerlin)  
Hardware Supported: Exent PCB  
Hardware Availability: [Geekhack GB](https://geekhack.org/index.php?topic=87213.0)  

Make example for this keyboard (after setting up your build environment):

    make exent:default

Flashing example for this keyboard ([after setting up the bootloadHID flashing environment](flashing_bootloadhid.md))

    make exent:default:flash

**Reset Key**: Hold down the key located at `k0d`, commonly programmed as Backspace while plugging in the keyboard.

See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

A keyboards/exent/rules.mk => keyboards/exent/rules.mk +28 -0
@@ 0,0 1,28 @@
# MCU name
MCU = atmega32a

# Bootloader selection
#   Teensy       halfkay
#   Pro Micro    caterina
#   Atmel DFU    atmel-dfu
#   LUFA DFU     lufa-dfu
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = bootloadHID

# build options
BOOTMAGIC_ENABLE = no
MOUSEKEY_ENABLE = no
EXTRAKEY_ENABLE = yes
CONSOLE_ENABLE = yes
COMMAND_ENABLE = yes
BACKLIGHT_ENABLE = no
RGBLIGHT_ENABLE = yes
RGBLIGHT_CUSTOM_DRIVER = yes

OPT_DEFS = -DDEBUG_LEVEL=0

SRC += i2c_master.c

LAYOUTS = 65_ansi 65_iso

A keyboards/exent/usbconfig.h => keyboards/exent/usbconfig.h +383 -0
@@ 0,0 1,383 @@
#pragma once

#include "config.h"

/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
*/

/* ---------------------------- Hardware Config ---------------------------- */

#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
 * "B", the registers PORTB, PINB and DDRB will be used.
 */
#define USB_CFG_DMINUS_BIT 3
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
 * This may be any bit in the port.
 */
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
 * This may be any bit in the port. Please note that D+ must also be connected
 * to interrupt pin INT0! [You can also use other interrupts, see section
 * "Optional MCU Description" below, or you can connect D- to the interrupt, as
 * it is required if you use the USB_COUNT_SOF feature. If you use D- for the
 * interrupt, the USB interrupt will also be triggered at Start-Of-Frame
 * markers every millisecond.]
 */
#define USB_CFG_CLOCK_KHZ (F_CPU / 1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
 * 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
 * require no crystal, they tolerate +/- 1% deviation from the nominal
 * frequency. All other rates require a precision of 2000 ppm and thus a
 * crystal!
 * Since F_CPU should be defined to your actual clock rate anyway, you should
 * not need to modify this setting.
 */
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
 * data packets (CRC checks). CRC checks cost quite a bit of code size and are
 * currently only available for 18 MHz crystal clock. You must choose
 * USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
 */

/* ----------------------- Optional Hardware Config ------------------------ */

/* #define USB_CFG_PULLUP_IOPORTNAME   D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
 * V+, you can connect and disconnect the device from firmware by calling
 * the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
 * This constant defines the port on which the pullup resistor is connected.
 */
/* #define USB_CFG_PULLUP_BIT          4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
 * above) where the 1.5k pullup resistor is connected. See description
 * above for details.
 */

/* --------------------------- Functional Range ---------------------------- */

#define USB_CFG_HAVE_INTRIN_ENDPOINT 1
/* Define this to 1 if you want to compile a version with two endpoints: The
 * default control endpoint 0 and an interrupt-in endpoint (any other endpoint
 * number).
 */
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 1
/* Define this to 1 if you want to compile a version with three endpoints: The
 * default control endpoint 0, an interrupt-in endpoint 3 (or the number
 * configured below) and a catch-all default interrupt-in endpoint as above.
 * You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
 */
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
 * endpoint number (except 0) with this macro. Default if undefined is 3.
 */
/* #define USB_INITIAL_DATATOKEN           USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
 * interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
 * Since the token is toggled BEFORE sending any data, the first packet is
 * sent with the oposite value of this configuration!
 */
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
 * for endpoint 1 (interrupt endpoint). Although you may not need this feature,
 * it is required by the standard. We have made it a config option because it
 * bloats the code considerably.
 */
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
 * want to send any data over them. If this macro is defined to 1, functions
 * usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
 * you need the interrupt-in endpoints in order to comply to an interface
 * (e.g. HID), but never want to send any data. This option saves a couple
 * of bytes in flash memory and the transmit buffers in RAM.
 */
#define USB_CFG_INTR_POLL_INTERVAL 1
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
 * interval. The value is in milliseconds and must not be less than 10 ms for
 * low speed devices.
 */
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
 * device is powered from the USB bus.
 */
#define USB_CFG_MAX_BUS_POWER 500
/* Set this variable to the maximum USB bus power consumption of your device.
 * The value is in milliamperes. [It will be divided by two since USB
 * communicates power requirements in units of 2 mA.]
 */
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
 * transfers. Set it to 0 if you don't need it and want to save a couple of
 * bytes.
 */
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
 * "on the fly" when usbFunctionRead() is called. If you only want to send
 * data from a static buffer, set it to 0 and return the data from
 * usbFunctionSetup(). This saves a couple of bytes.
 */
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
 * You must implement the function usbFunctionWriteOut() which receives all
 * interrupt/bulk data sent to any endpoint other than 0. The endpoint number
 * can be found in 'usbRxToken'.
 */
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
 * of the macros usbDisableAllRequests() and usbEnableAllRequests() in
 * usbdrv.h.
 */
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
 * where the driver's constants (descriptors) are located. Or in other words:
 * Define this to 1 for boot loaders on the ATMega128.
 */
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
 * in a single control-in or control-out transfer. Note that the capability
 * for long transfers increases the driver size.
 */
/* #define USB_RX_USER_HOOK(data, len)     if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
 * defined, it's inserted at the beginning of received message processing.
 * If you eat the received message and don't want default processing to
 * proceed, do a return after doing your things. One possible application
 * (besides debugging) is to flash a status LED on each packet.
 */
/* #define USB_RESET_HOOK(resetStarts)     if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
 * one parameter which distinguishes between the start of RESET state and its
 * end.
 */
/* #define USB_SET_ADDRESS_HOOK()              hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
 * received.
 */
#define USB_COUNT_SOF 1
/* define this macro to 1 if you need the global variable "usbSofCount" which
 * counts SOF packets. This feature requires that the hardware interrupt is
 * connected to D- instead of D+.
 */
/* #ifdef __ASSEMBLER__
 * macro myAssemblerMacro
 *     in      YL, TCNT0
 *     sts     timer0Snapshot, YL
 *     endm
 * #endif
 * #define USB_SOF_HOOK                    myAssemblerMacro
 * This macro (if defined) is executed in the assembler module when a
 * Start Of Frame condition is detected. It is recommended to define it to
 * the name of an assembler macro which is defined here as well so that more
 * than one assembler instruction can be used. The macro may use the register
 * YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
 * immediately after an SOF pulse may be lost and must be retried by the host.
 * What can you do with this hook? Since the SOF signal occurs exactly every
 * 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
 * designs running on the internal RC oscillator.
 * Please note that Start Of Frame detection works only if D- is wired to the
 * interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
 */
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
 * sent by the host. Duplicates occur only as a consequence of communication
 * errors, when the host does not receive an ACK. Please note that you need to
 * implement the filtering yourself in usbFunctionWriteOut() and
 * usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
 * for each control- and out-endpoint to check for duplicate packets.
 */
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
 * compiled in. This function can be used to calibrate the AVR's RC oscillator.
 */
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
 * faster, the other is smaller. This CRC routine is only used for transmitted
 * messages where timing is not critical. The faster routine needs 31 cycles
 * per byte while the smaller one needs 61 to 69 cycles. The faster routine
 * may be worth the 32 bytes bigger code size if you transmit lots of data and
 * run the AVR close to its limit.
 */

/* -------------------------- Device Description --------------------------- */

#define USB_CFG_VENDOR_ID (VENDOR_ID & 0xFF), ((VENDOR_ID >> 8) & 0xFF)
/* USB vendor ID for the device, low byte first. If you have registered your
 * own Vendor ID, define it here. Otherwise you may use one of obdev's free
 * shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
 * *** IMPORTANT NOTE ***
 * This template uses obdev's shared VID/PID pair for Vendor Class devices
 * with libusb: 0x16c0/0x5dc.  Use this VID/PID pair ONLY if you understand
 * the implications!
 */
#define USB_CFG_DEVICE_ID (PRODUCT_ID & 0xFF), ((PRODUCT_ID >> 8) & 0xFF)
/* This is the ID of the product, low byte first. It is interpreted in the
 * scope of the vendor ID. If you have registered your own VID with usb.org
 * or if you have licensed a PID from somebody else, define it here. Otherwise
 * you may use one of obdev's free shared VID/PID pairs. See the file
 * USB-IDs-for-free.txt for details!
 * *** IMPORTANT NOTE ***
 * This template uses obdev's shared VID/PID pair for Vendor Class devices
 * with libusb: 0x16c0/0x5dc.  Use this VID/PID pair ONLY if you understand
 * the implications!
 */
#define USB_CFG_DEVICE_VERSION 0x00, 0x02
/* Version number of the device: Minor number first, then major number.
 */
#define USB_CFG_VENDOR_NAME 'w', 'i', 'n', 'k', 'e', 'y', 'l', 'e', 's', 's', '.', 'k', 'r'
#define USB_CFG_VENDOR_NAME_LEN 13
/* These two values define the vendor name returned by the USB device. The name
 * must be given as a list of characters under single quotes. The characters
 * are interpreted as Unicode (UTF-16) entities.
 * If you don't want a vendor name string, undefine these macros.
 * ALWAYS define a vendor name containing your Internet domain name if you use
 * obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
 * details.
 */
#define USB_CFG_DEVICE_NAME 'p', 's', '2', 'a', 'v', 'r', 'G', 'B'
#define USB_CFG_DEVICE_NAME_LEN 8
/* Same as above for the device name. If you don't want a device name, undefine
 * the macros. See the file USB-IDs-for-free.txt before you assign a name if
 * you use a shared VID/PID.
 */
/*#define USB_CFG_SERIAL_NUMBER   'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN   0 */
/* Same as above for the serial number. If you don't want a serial number,
 * undefine the macros.
 * It may be useful to provide the serial number through other means than at
 * compile time. See the section about descriptor properties below for how
 * to fine tune control over USB descriptors such as the string descriptor
 * for the serial number.
 */
#define USB_CFG_DEVICE_CLASS 0
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
 * Class 0xff is "vendor specific".
 */
#define USB_CFG_INTERFACE_CLASS 3    /* HID */
#define USB_CFG_INTERFACE_SUBCLASS 1 /* Boot */
#define USB_CFG_INTERFACE_PROTOCOL 1 /* Keyboard */
/* See USB specification if you want to conform to an existing device class or
 * protocol. The following classes must be set at interface level:
 * HID class is 3, no subclass and protocol required (but may be useful!)
 * CDC class is 2, use subclass 2 and protocol 1 for ACM
 */
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 0
/* Define this to the length of the HID report descriptor, if you implement
 * an HID device. Otherwise don't define it or define it to 0.
 * If you use this define, you must add a PROGMEM character array named
 * "usbHidReportDescriptor" to your code which contains the report descriptor.
 * Don't forget to keep the array and this define in sync!
 */

/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
 * This technique saves a couple of bytes in flash memory.
 */

/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
 * provide our own. These can be provided as (1) fixed length static data in
 * flash memory, (2) fixed length static data in RAM or (3) dynamically at
 * runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
 * information about this function.
 * Descriptor handling is configured through the descriptor's properties. If
 * no properties are defined or if they are 0, the default descriptor is used.
 * Possible properties are:
 *   + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
 *     at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
 *     used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
 *     you want RAM pointers.
 *   + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
 *     in static memory is in RAM, not in flash memory.
 *   + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
 *     the driver must know the descriptor's length. The descriptor itself is
 *     found at the address of a well known identifier (see below).
 * List of static descriptor names (must be declared PROGMEM if in flash):
 *   char usbDescriptorDevice[];
 *   char usbDescriptorConfiguration[];
 *   char usbDescriptorHidReport[];
 *   char usbDescriptorString0[];
 *   int usbDescriptorStringVendor[];
 *   int usbDescriptorStringDevice[];
 *   int usbDescriptorStringSerialNumber[];
 * Other descriptors can't be provided statically, they must be provided
 * dynamically at runtime.
 *
 * Descriptor properties are or-ed or added together, e.g.:
 * #define USB_CFG_DESCR_PROPS_DEVICE   (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
 *
 * The following descriptors are defined:
 *   USB_CFG_DESCR_PROPS_DEVICE
 *   USB_CFG_DESCR_PROPS_CONFIGURATION
 *   USB_CFG_DESCR_PROPS_STRINGS
 *   USB_CFG_DESCR_PROPS_STRING_0
 *   USB_CFG_DESCR_PROPS_STRING_VENDOR
 *   USB_CFG_DESCR_PROPS_STRING_PRODUCT
 *   USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
 *   USB_CFG_DESCR_PROPS_HID
 *   USB_CFG_DESCR_PROPS_HID_REPORT
 *   USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
 *
 * Note about string descriptors: String descriptors are not just strings, they
 * are Unicode strings prefixed with a 2 byte header. Example:
 * int  serialNumberDescriptor[] = {
 *     USB_STRING_DESCRIPTOR_HEADER(6),
 *     'S', 'e', 'r', 'i', 'a', 'l'
 * };
 */

#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_CONFIGURATION           0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID                     0
#define USB_CFG_DESCR_PROPS_HID_REPORT USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID_REPORT              0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0

#define usbMsgPtr_t unsigned short
/* If usbMsgPtr_t is not defined, it defaults to 'uchar *'. We define it to
 * a scalar type here because gcc generates slightly shorter code for scalar
 * arithmetics than for pointer arithmetics. Remove this define for backward
 * type compatibility or define it to an 8 bit type if you use data in RAM only
 * and all RAM is below 256 bytes (tiny memory model in IAR CC).
 */

/* ----------------------- Optional MCU Description ------------------------ */

/* The following configurations have working defaults in usbdrv.h. You
 * usually don't need to set them explicitly. Only if you want to run
 * the driver on a device which is not yet supported or with a compiler
 * which is not fully supported (such as IAR C) or if you use a differnt
 * interrupt than INT0, you may have to define some of these.
 */
/* #define USB_INTR_CFG            MCUCR */
/* #define USB_INTR_CFG_SET        ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR        0 */
/* #define USB_INTR_ENABLE         GIMSK */
/* #define USB_INTR_ENABLE_BIT     INT0 */
/* #define USB_INTR_PENDING        GIFR */
/* #define USB_INTR_PENDING_BIT    INTF0 */
/* #define USB_INTR_VECTOR         INT0_vect */

/* Set INT1 for D- falling edge to count SOF */
/* #define USB_INTR_CFG            EICRA */
#define USB_INTR_CFG_SET ((1 << ISC11) | (0 << ISC10))
/* #define USB_INTR_CFG_CLR        0 */
/* #define USB_INTR_ENABLE         EIMSK */
#define USB_INTR_ENABLE_BIT INT1
/* #define USB_INTR_PENDING        EIFR */
#define USB_INTR_PENDING_BIT INTF1
#define USB_INTR_VECTOR INT1_vect