~ruther/qmk_firmware

37932c293c15011f883a91e91ee02631ead44a2e — James Churchill 6 years ago 25bb059
Next set of split_common changes (#4974)

* Update split_common to use standard i2c drivers

* Eliminate RGB_DIRTY/BACKLIT_DIRTY

* Fix avr i2c_master error handling

* Fix i2c_slave addressing

* Remove unneeded timeout on i2c_stop()

* Fix RGB I2C transfers

* Remove incorrect comment
M common_features.mk => common_features.mk +5 -5
@@ 308,16 308,16 @@ ifeq ($(strip $(SPLIT_KEYBOARD)), yes)
    OPT_DEFS += -DSPLIT_KEYBOARD

    # Include files used by all split keyboards
    QUANTUM_SRC += $(QUANTUM_DIR)/split_common/split_flags.c \
                   $(QUANTUM_DIR)/split_common/split_util.c
    QUANTUM_SRC += $(QUANTUM_DIR)/split_common/split_util.c

    # Determine which (if any) transport files are required
    ifneq ($(strip $(SPLIT_TRANSPORT)), custom)
        QUANTUM_SRC += $(QUANTUM_DIR)/split_common/transport.c
        # Functions added via QUANTUM_LIB_SRC are only included in the final binary if they're called.
        # Unused functions are pruned away, which is why we can add both drivers here without bloat.
        QUANTUM_LIB_SRC += $(QUANTUM_DIR)/split_common/i2c.c \
                           $(QUANTUM_DIR)/split_common/serial.c
        # Unused functions are pruned away, which is why we can add multiple drivers here without bloat.
        QUANTUM_LIB_SRC += $(QUANTUM_DIR)/split_common/serial.c \
                           i2c_master.c \
                           i2c_slave.c
    endif
    COMMON_VPATH += $(QUANTUM_PATH)/split_common
endif

M docs/i2c_driver.md => docs/i2c_driver.md +1 -1
@@ 12,7 12,7 @@ The I2C Master drivers used in QMK have a set of common functions to allow porta
|`uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);`                         |Receive data over I2C. Address is the 7-bit slave address without the direction. Saves number of bytes specified by `length` in `data` array. Returns status of transaction. |
|`uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);`       |Same as the `i2c_transmit` function but `regaddr` sets where in the slave the data will be written.                                                                          |
|`uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);`        |Same as the `i2c_receive` function but `regaddr` sets from where in the slave the data will be read.                                                                         |
|`uint8_t i2c_stop(uint16_t timeout);`                                                                             |Stops the I2C driver.                                                                                                                                                        |
|`uint8_t i2c_stop(void);`                                                                                         |Ends an I2C transaction.                                                                                                                                                     |

### Function Return


M drivers/arm/i2c_master.c => drivers/arm/i2c_master.c +1 -2
@@ 101,8 101,7 @@ uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t l
  return i2cMasterTransmitTimeout(&I2C_DRIVER, (i2c_address >> 1), regaddr, 1, data, length, MS2ST(timeout));
}

// This is usually not needed. It releases the driver to allow pins to become GPIO again.
uint8_t i2c_stop(uint16_t timeout)
uint8_t i2c_stop(void)
{
  i2cStop(&I2C_DRIVER);
  return 0;

M drivers/arm/i2c_master.h => drivers/arm/i2c_master.h +1 -1
@@ 47,4 47,4 @@ uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t ti
uint8_t i2c_transmit_receive(uint8_t address, uint8_t * tx_body, uint16_t tx_length, uint8_t * rx_body, uint16_t rx_length);
uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
uint8_t i2c_stop(uint16_t timeout);
uint8_t i2c_stop(void);

M drivers/avr/i2c_master.c => drivers/avr/i2c_master.c +67 -93
@@ 7,43 7,44 @@

#include "i2c_master.h"
#include "timer.h"
#include "wait.h"

#ifndef F_SCL
#define F_SCL 400000UL // SCL frequency
#  define F_SCL 400000UL  // SCL frequency
#endif
#define Prescaler 1
#define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16 ) / 2)
#define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16) / 2)

void i2c_init(void)
{
  TWSR = 0;     /* no prescaler */
void i2c_init(void) {
  TWSR = 0; /* no prescaler */
  TWBR = (uint8_t)TWBR_val;
}

i2c_status_t i2c_start(uint8_t address, uint16_t timeout)
{
i2c_status_t i2c_start(uint8_t address, uint16_t timeout) {
  // reset TWI control register
  TWCR = 0;
  // transmit START condition
  TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
  TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
  while (!(TWCR & (1 << TWINT))) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

  // check if the start condition was successfully transmitted
  if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return I2C_STATUS_ERROR; }
  if (((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)) {
    return I2C_STATUS_ERROR;
  }

  // load slave address into data register
  TWDR = address;
  // start transmission of address
  TWCR = (1<<TWINT) | (1<<TWEN);
  TWCR = (1 << TWINT) | (1 << TWEN);

  timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
  while (!(TWCR & (1 << TWINT))) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }


@@ 51,38 52,39 @@ i2c_status_t i2c_start(uint8_t address, uint16_t timeout)

  // check if the device has acknowledged the READ / WRITE mode
  uint8_t twst = TW_STATUS & 0xF8;
  if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return I2C_STATUS_ERROR;
  if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) {
    return I2C_STATUS_ERROR;
  }

  return I2C_STATUS_SUCCESS;
}

i2c_status_t i2c_write(uint8_t data, uint16_t timeout)
{
i2c_status_t i2c_write(uint8_t data, uint16_t timeout) {
  // load data into data register
  TWDR = data;
  // start transmission of data
  TWCR = (1<<TWINT) | (1<<TWEN);
  TWCR = (1 << TWINT) | (1 << TWEN);

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
  while (!(TWCR & (1 << TWINT))) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

  if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return I2C_STATUS_ERROR; }
  if ((TW_STATUS & 0xF8) != TW_MT_DATA_ACK) {
    return I2C_STATUS_ERROR;
  }

  return I2C_STATUS_SUCCESS;
}

int16_t i2c_read_ack(uint16_t timeout)
{

int16_t i2c_read_ack(uint16_t timeout) {
  // start TWI module and acknowledge data after reception
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
  TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
  while (!(TWCR & (1 << TWINT))) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }


@@ 92,14 94,12 @@ int16_t i2c_read_ack(uint16_t timeout)
  return TWDR;
}

int16_t i2c_read_nack(uint16_t timeout)
{

int16_t i2c_read_nack(uint16_t timeout) {
  // start receiving without acknowledging reception
  TWCR = (1<<TWINT) | (1<<TWEN);
  TWCR = (1 << TWINT) | (1 << TWEN);

  uint16_t timeout_timer = timer_read();
  while( !(TWCR & (1<<TWINT)) ) {
  while (!(TWCR & (1 << TWINT))) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }


@@ 109,115 109,89 @@ int16_t i2c_read_nack(uint16_t timeout)
  return TWDR;
}

i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) {
  i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
  if (status) return status;

  for (uint16_t i = 0; i < length; i++) {
  for (uint16_t i = 0; i < length && status >= 0; i++) {
    status = i2c_write(data[i], timeout);
    if (status) return status;
  }

  status = i2c_stop(timeout);
  if (status) return status;
  i2c_stop();

  return I2C_STATUS_SUCCESS;
  return status;
}

i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) {
  i2c_status_t status = i2c_start(address | I2C_READ, timeout);
  if (status) return status;

  for (uint16_t i = 0; i < (length-1); i++) {
  for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
    status = i2c_read_ack(timeout);
    if (status >= 0) {
      data[i] = status;
    } else {
      return status;
    }
  }

  status = i2c_read_nack(timeout);
  if (status >= 0 ) {
    data[(length-1)] = status;
  } else {
    return status;
  if (status >= 0) {
    status = i2c_read_nack(timeout);
    if (status >= 0) {
      data[(length - 1)] = status;
    }
  }

  status = i2c_stop(timeout);
  if (status) return status;
  i2c_stop();

  return I2C_STATUS_SUCCESS;
  return status;
}

i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
  i2c_status_t status = i2c_start(devaddr | 0x00, timeout);
  if (status) return status;

  status = i2c_write(regaddr, timeout);
  if (status) return status;
  if (status >= 0) {
    status = i2c_write(regaddr, timeout);

  for (uint16_t i = 0; i < length; i++) {
    status = i2c_write(data[i], timeout);
    if (status) return status;
    for (uint16_t i = 0; i < length && status >= 0; i++) {
      status = i2c_write(data[i], timeout);
    }
  }

  status = i2c_stop(timeout);
  if (status) return status;
  i2c_stop();

  return I2C_STATUS_SUCCESS;
  return status;
}

i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout)
{
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) {
  i2c_status_t status = i2c_start(devaddr, timeout);
  if (status) return status;
  if (status < 0) {
    goto error;
  }

  status = i2c_write(regaddr, timeout);
  if (status) return status;

  status = i2c_stop(timeout);
  if (status) return status;
  if (status < 0) {
    goto error;
  }

  status = i2c_start(devaddr | 0x01, timeout);
  if (status) return status;

  for (uint16_t i = 0; i < (length-1); i++) {
  for (uint16_t i = 0; i < (length - 1) && status >= 0; i++) {
    status = i2c_read_ack(timeout);
    if (status >= 0) {
      data[i] = status;
    } else {
      return status;
    }
  }

  status = i2c_read_nack(timeout);
  if (status >= 0 ) {
    data[(length-1)] = status;
  } else {
    return status;
  if (status >= 0) {
    status = i2c_read_nack(timeout);
    if (status >= 0) {
      data[(length - 1)] = status;
    }
  }

  status = i2c_stop(timeout);
  if (status) return status;
error:
  i2c_stop();

  return I2C_STATUS_SUCCESS;
  return status;
}

i2c_status_t i2c_stop(uint16_t timeout)
{
void i2c_stop(void) {
  // transmit STOP condition
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t timeout_timer = timer_read();
  while(TWCR & (1<<TWSTO)) {
    if ((timeout != I2C_TIMEOUT_INFINITE) && ((timer_read() - timeout_timer) >= timeout)) {
      return I2C_STATUS_TIMEOUT;
    }
  }

  return I2C_STATUS_SUCCESS;
  TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);
}

M drivers/avr/i2c_master.h => drivers/avr/i2c_master.h +1 -1
@@ 26,6 26,6 @@ i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint1
i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);
i2c_status_t i2c_stop(uint16_t timeout);
void i2c_stop(void);

#endif // I2C_MASTER_H
\ No newline at end of file

M drivers/avr/i2c_slave.c => drivers/avr/i2c_slave.c +1 -1
@@ 16,7 16,7 @@ static volatile bool slave_has_register_set = false;

void i2c_slave_init(uint8_t address){
    // load address into TWI address register
    TWAR = (address << 1);
    TWAR = address;
    // set the TWCR to enable address matching and enable TWI, clear TWINT, enable TWI interrupt
    TWCR = (1 << TWIE) | (1 << TWEA) | (1 << TWINT) | (1 << TWEN);
}

M keyboards/cannonkeys/satisfaction75/i2c_master.c => keyboards/cannonkeys/satisfaction75/i2c_master.c +1 -1
@@ 109,7 109,7 @@ uint8_t i2c_readReg(uint8_t devaddr, uint8_t* regaddr, uint8_t* data, uint16_t l
}

// This is usually not needed. It releases the driver to allow pins to become GPIO again.
uint8_t i2c_stop(uint16_t timeout)
uint8_t i2c_stop(void)
{
  i2cStop(&I2C_DRIVER);
  return 0;

M keyboards/dc01/left/matrix.c => keyboards/dc01/left/matrix.c +2 -2
@@ 455,10 455,10 @@ i2c_status_t i2c_transaction(uint8_t address, uint32_t mask, uint8_t col_offset)
        matrix[MATRIX_ROWS - 1] |= ((uint32_t)err << (MATRIX_COLS_SCANNED + col_offset)); //add new bits at the end

    } else {
        i2c_stop(10);
        i2c_stop();
        return 1;
    }

    i2c_stop(10);
    i2c_stop();
    return 0;
}
\ No newline at end of file

M keyboards/ergodox_ez/ergodox_ez.c => keyboards/ergodox_ez/ergodox_ez.c +3 -3
@@ 128,7 128,7 @@ uint8_t init_mcp23018(void) {
    mcp23018_status = i2c_write(IODIRA, ERGODOX_EZ_I2C_TIMEOUT);            if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;
    i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
    i2c_stop();

    // set pull-up
    // - unused  : on  : 1


@@ 140,7 140,7 @@ uint8_t init_mcp23018(void) {
    mcp23018_status = i2c_write(0b00111111, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;

out:
    i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
    i2c_stop();

#ifdef LEFT_LEDS
    if (!mcp23018_status) mcp23018_status = ergodox_left_leds_update();


@@ 179,7 179,7 @@ uint8_t ergodox_left_leds_update(void) {
    if (mcp23018_status) goto out;

 out:
    i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
    i2c_stop();
    return mcp23018_status;
}
#endif

M keyboards/ergodox_ez/matrix.c => keyboards/ergodox_ez/matrix.c +2 -2
@@ 309,7 309,7 @@ static matrix_row_t read_cols(uint8_t row)
            data = ~((uint8_t)mcp23018_status);
            mcp23018_status = I2C_STATUS_SUCCESS;
        out:
            i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
            i2c_stop();
            return data;
        }
    } else {


@@ 362,7 362,7 @@ static void select_row(uint8_t row)
            mcp23018_status = i2c_write(GPIOA, ERGODOX_EZ_I2C_TIMEOUT);                 if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(0xFF & ~(1<<row), ERGODOX_EZ_I2C_TIMEOUT);      if (mcp23018_status) goto out;
        out:
            i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
            i2c_stop();
        }
    } else {
        // select on teensy

M keyboards/gergo/gergo.c => keyboards/gergo/gergo.c +2 -2
@@ 47,7 47,7 @@ uint8_t init_mcp23018(void) {
    mcp23018_status = i2c_write(IODIRA, ERGODOX_EZ_I2C_TIMEOUT);            if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b10000000, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b11111111, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;
    i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
    i2c_stop();

    // set pull-up
    // - unused  : on  : 1


@@ 59,7 59,7 @@ uint8_t init_mcp23018(void) {
    mcp23018_status = i2c_write(0b11111111, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;

out:
    i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
    i2c_stop();
    // SREG=sreg_prev;
    //uprintf("Init %x\n", mcp23018_status);
    return mcp23018_status;

M keyboards/gergo/matrix.c => keyboards/gergo/matrix.c +18 -18
@@ 72,14 72,14 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
//Trackball pin defs
#define TRKUP (1<<4)
#define TRKDN (1<<5)
#define TRKLT (1<<6) 
#define TRKLT (1<<6)
#define TRKRT (1<<7)
#define TRKBTN (1<<6)


// Multiple for mouse moves
#ifndef TRKSTEP
#define TRKSTEP 20 
#define TRKSTEP 20
#endif

// multiple for mouse scroll


@@ 98,13 98,13 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.

// Trackball interrupts accumulate over here. Processed on scan
// Stores prev state of mouse, high bits store direction
uint8_t trkState    = 0; 
uint8_t trkBtnState = 0; 
uint8_t trkState    = 0;
uint8_t trkBtnState = 0;

volatile uint8_t tbUpCnt  = 0; 
volatile uint8_t tbDnCnt  = 0; 
volatile uint8_t tbLtCnt  = 0; 
volatile uint8_t tbRtCnt  = 0; 
volatile uint8_t tbUpCnt  = 0;
volatile uint8_t tbDnCnt  = 0;
volatile uint8_t tbLtCnt  = 0;
volatile uint8_t tbRtCnt  = 0;

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];


@@ 240,14 240,14 @@ uint8_t matrix_scan(void)
  // First we handle the mouse inputs
  #ifdef BALLER
  uint8_t pBtn   = PINE & TRKBTN;
  

  #ifdef DEBUG_BALLER
  // Compare to previous, mod report 
  // Compare to previous, mod report
  if (tbUpCnt + tbDnCnt + tbLtCnt + tbRtCnt != 0)
    xprintf("U: %d D: %d L: %d R: %d B: %d\n", tbUpCnt, tbDnCnt, tbLtCnt, tbRtCnt, (trkBtnState >> 6));
  #endif

  // Modify the report 
  // Modify the report
  report_mouse_t pRprt = pointing_device_get_report();

  // Scroll by default, move on layer


@@ 264,7 264,7 @@ uint8_t matrix_scan(void)
  }

  #ifdef DEBUG_BALLER
  if (pRprt.x != 0 || pRprt.y != 0) 
  if (pRprt.x != 0 || pRprt.y != 0)
	xprintf("X: %d Y: %d\n", pRprt.x, pRprt.y);
  #endif



@@ 272,7 272,7 @@ uint8_t matrix_scan(void)
  if ((pBtn != trkBtnState) && ((pBtn >> 6) == 1))  pRprt.buttons &= ~MOUSE_BTN1;

  // Save state, push update
  if (pRprt.x != 0 || pRprt.y != 0 || pRprt.h != 0 || pRprt.v != 0 || (trkBtnState != pBtn)) 
  if (pRprt.x != 0 || pRprt.y != 0 || pRprt.h != 0 || pRprt.v != 0 || (trkBtnState != pBtn))
    pointing_device_set_report(pRprt);

  trkBtnState = pBtn;


@@ 325,8 325,8 @@ uint8_t matrix_scan(void)
    enableInterrupts();

#ifdef DEBUG_MATRIX
    for (uint8_t c = 0; c < MATRIX_COLS; c++) 
		for (uint8_t r = 0; r < MATRIX_ROWS; r++) 
    for (uint8_t c = 0; c < MATRIX_COLS; c++)
		for (uint8_t r = 0; r < MATRIX_ROWS; r++)
		  if (matrix_is_on(r, c)) xprintf("r:%d c:%d \n", r, c);
#endif



@@ 394,7 394,7 @@ static matrix_row_t read_cols(uint8_t row)
            data = ~((uint8_t)mcp23018_status);
            mcp23018_status = I2C_STATUS_SUCCESS;
        out:
            i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
            i2c_stop();

#ifdef DEBUG_MATRIX
            if (data != 0x00) xprintf("I2C: %d\n", data);


@@ 439,12 439,12 @@ static void select_row(uint8_t row)
    if (row < 7) {
        // select on mcp23018
        if (mcp23018_status) { // do nothing on error
        } else { // set active row low  : 0 // set other rows hi-Z : 1 
        } else { // set active row low  : 0 // set other rows hi-Z : 1
            mcp23018_status = i2c_start(I2C_ADDR_WRITE, ERGODOX_EZ_I2C_TIMEOUT);        if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOA, ERGODOX_EZ_I2C_TIMEOUT);                 if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(0xFF & ~(1<<row), ERGODOX_EZ_I2C_TIMEOUT);      if (mcp23018_status) goto out;
        out:
            i2c_stop(ERGODOX_EZ_I2C_TIMEOUT);
            i2c_stop();
        }
    } else {
        // Output low(DDR:1, PORT:0) to select

M quantum/keymap_common.c => quantum/keymap_common.c +0 -22
@@ 29,10 29,6 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include "backlight.h"
#include "quantum.h"

#ifdef SPLIT_KEYBOARD
    #include "split_flags.h"
#endif

#ifdef MIDI_ENABLE
	#include "process_midi.h"
#endif


@@ 138,39 134,21 @@ action_t action_for_key(uint8_t layer, keypos_t key)
    #ifdef BACKLIGHT_ENABLE
        case BL_ON:
            action.code = ACTION_BACKLIGHT_ON();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
        case BL_OFF:
            action.code = ACTION_BACKLIGHT_OFF();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
        case BL_DEC:
            action.code = ACTION_BACKLIGHT_DECREASE();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
        case BL_INC:
            action.code = ACTION_BACKLIGHT_INCREASE();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
        case BL_TOGG:
            action.code = ACTION_BACKLIGHT_TOGGLE();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
        case BL_STEP:
            action.code = ACTION_BACKLIGHT_STEP();
            #ifdef SPLIT_KEYBOARD
                BACKLIT_DIRTY = true;
            #endif
            break;
    #endif
    #ifdef SWAP_HANDS_ENABLE

M quantum/quantum.c => quantum/quantum.c +0 -30
@@ 360,9 360,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_toggle();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_MODE_FORWARD:


@@ 374,9 371,6 @@ bool process_record_quantum(keyrecord_t *record) {
      else {
        rgblight_step();
      }
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_MODE_REVERSE:


@@ 388,9 382,6 @@ bool process_record_quantum(keyrecord_t *record) {
      else {
        rgblight_step_reverse();
      }
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_HUI:


@@ 401,9 392,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_increase_hue();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_HUD:


@@ 414,9 402,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_hue();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_SAI:


@@ 427,9 412,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_increase_sat();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_SAD:


@@ 440,9 422,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_sat();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_VAI:


@@ 453,9 432,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_increase_val();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_VAD:


@@ 466,9 442,6 @@ bool process_record_quantum(keyrecord_t *record) {
    if (!record->event.pressed) {
    #endif
      rgblight_decrease_val();
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_SPI:


@@ 484,9 457,6 @@ bool process_record_quantum(keyrecord_t *record) {
  case RGB_MODE_PLAIN:
    if (record->event.pressed) {
      rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
      #ifdef SPLIT_KEYBOARD
          RGB_DIRTY = true;
      #endif
    }
    return false;
  case RGB_MODE_BREATHE:

M quantum/quantum.h => quantum/quantum.h +0 -4
@@ 44,10 44,6 @@
    #endif
#endif

#ifdef SPLIT_KEYBOARD
    #include "split_flags.h"
#endif

#ifdef RGB_MATRIX_ENABLE
    #include "rgb_matrix.h"
#endif

D quantum/split_common/i2c.c => quantum/split_common/i2c.c +0 -184
@@ 1,184 0,0 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#include "split_flags.h"

// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK)  =>  # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8

#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)

volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;

// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
  uint16_t lim = 0;
  while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
    lim++;

  // easier way, but will wait slightly longer
  // _delay_us(100);
}

// Setup twi to run at 100kHz
void i2c_master_init(void) {
  // no prescaler
  TWSR = 0;
  // Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
  // Check datasheets for more info.
  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}

// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
//          1 => error
uint8_t i2c_master_start(uint8_t address) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);

  i2c_delay();

  // check that we started successfully
  if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
    return 1;

  TWDR = address;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
    return 1; // slave did not acknowledge
  else
    return 0; // success
}


// Finish the i2c transaction.
void i2c_master_stop(void) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t lim = 0;
  while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
    lim++;
}

// Write one byte to the i2c slave.
// returns 0 => slave ACK
//         1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  // check if the slave acknowledged us
  return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}

uint8_t i2c_master_write_data(void *const TXdata, uint8_t dataLen) {
    
    uint8_t *data = (uint8_t *)TXdata;
    int err = 0;
    
    for (int i = 0; i < dataLen; i++) {
        err = i2c_master_write(data[i]);
        
        if ( err )
            return err;
    }
    
    return err;
    
}

// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);

  i2c_delay();
  return TWDR;
}

void i2c_reset_state(void) {
  TWCR = 0;
}

void i2c_slave_init(uint8_t address) {
  TWAR = address << 0; // slave i2c address
  // TWEN  - twi enable
  // TWEA  - enable address acknowledgement
  // TWINT - twi interrupt flag
  // TWIE  - enable the twi interrupt
  TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}

ISR(TWI_vect);

ISR(TWI_vect) {
  uint8_t ack = 1;
  switch(TW_STATUS) {
    case TW_SR_SLA_ACK:
      // this device has been addressed as a slave receiver
      slave_has_register_set = false;
      break;

    case TW_SR_DATA_ACK:
      // this device has received data as a slave receiver
      // The first byte that we receive in this transaction sets the location
      // of the read/write location of the slaves memory that it exposes over
      // i2c.  After that, bytes will be written at slave_buffer_pos, incrementing
      // slave_buffer_pos after each write.
      if(!slave_has_register_set) {
        slave_buffer_pos = TWDR;
        // don't acknowledge the master if this memory loctaion is out of bounds
        if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
          ack = 0;
          slave_buffer_pos = 0;
        }  
        
        slave_has_register_set = true;
      } else {      
        i2c_slave_buffer[slave_buffer_pos] = TWDR;
        
        if ( slave_buffer_pos == I2C_BACKLIT_START) {
            BACKLIT_DIRTY = true;
        } else if ( slave_buffer_pos == (I2C_RGB_START+3)) {
            RGB_DIRTY = true;
        }
        
        BUFFER_POS_INC();
      }
      break;

    case TW_ST_SLA_ACK:
    case TW_ST_DATA_ACK:
      // master has addressed this device as a slave transmitter and is
      // requesting data.
      TWDR = i2c_slave_buffer[slave_buffer_pos];
      BUFFER_POS_INC();
      break;

    case TW_BUS_ERROR: // something went wrong, reset twi state
      TWCR = 0;
    default:
      break;
  }
  // Reset everything, so we are ready for the next TWI interrupt
  TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}

D quantum/split_common/i2c.h => quantum/split_common/i2c.h +0 -59
@@ 1,59 0,0 @@
#pragma once

#include <stdint.h>

#ifndef F_CPU
#define F_CPU 16000000UL
#endif

#define I2C_READ 1
#define I2C_WRITE 0

#define I2C_ACK 1
#define I2C_NACK 0

// Address location defines (Keymap should be last, as it's size is dynamic)
#define I2C_BACKLIT_START   0x00
// Need 4 bytes for RGB (32 bit)
#define I2C_RGB_START       0x01
#define I2C_KEYMAP_START    0x06

// Slave buffer (8bit per)
// Rows per hand + backlit space + rgb space
// TODO : Make this dynamically sized
#define SLAVE_BUFFER_SIZE 0x20

// i2c SCL clock frequency
#ifndef SCL_CLOCK
#define SCL_CLOCK  100000L
#endif

// Support 8bits right now (8 cols) will need to edit to take higher (code exists in delta split?)
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_write_data(void *const TXdata, uint8_t dataLen);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);


static inline unsigned char i2c_start_read(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_READ);
}

static inline unsigned char i2c_start_write(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_WRITE);
}

// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);

#define i2c_read(ack)  (ack) ? i2c_readAck() : i2c_readNak();

M quantum/split_common/matrix.c => quantum/split_common/matrix.c +0 -1
@@ 25,7 25,6 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include "matrix.h"
#include "split_util.h"
#include "config.h"
#include "split_flags.h"
#include "quantum.h"
#include "debounce.h"
#include "transport.h"

D quantum/split_common/split_flags.c => quantum/split_common/split_flags.c +0 -5
@@ 1,5 0,0 @@
#include "split_flags.h"

volatile bool RGB_DIRTY = false;

volatile bool BACKLIT_DIRTY = false;
\ No newline at end of file

D quantum/split_common/split_flags.h => quantum/split_common/split_flags.h +0 -15
@@ 1,15 0,0 @@
#pragma once

#include <stdbool.h>
#include <stdint.h>

/**
* Global Flags
**/

//RGB Stuff
extern volatile bool RGB_DIRTY;


//Backlight Stuff
extern volatile bool BACKLIT_DIRTY;

M quantum/split_common/split_util.c => quantum/split_common/split_util.c +0 -5
@@ 3,7 3,6 @@
#include "keyboard.h"
#include "config.h"
#include "timer.h"
#include "split_flags.h"
#include "transport.h"
#include "quantum.h"



@@ 60,10 59,6 @@ static void keyboard_master_setup(void) {
  #endif
#endif
  transport_master_init();

  // For master the Backlight info needs to be sent on startup
  // Otherwise the salve won't start with the proper info until an update
  BACKLIT_DIRTY = true;
}

static void keyboard_slave_setup(void)

M quantum/split_common/transport.c => quantum/split_common/transport.c +85 -151
@@ 3,146 3,83 @@
#include "matrix.h"
#include "quantum.h"

#define ROWS_PER_HAND (MATRIX_ROWS/2)
#define ROWS_PER_HAND (MATRIX_ROWS / 2)

#ifdef RGBLIGHT_ENABLE
#   include "rgblight.h"
#  include "rgblight.h"
#endif

#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
  extern backlight_config_t backlight_config;
#  include "backlight.h"
extern backlight_config_t backlight_config;
#endif

#if defined(USE_I2C) || defined(EH)

#include "i2c.h"
#  include "i2c_master.h"
#  include "i2c_slave.h"

#ifndef SLAVE_I2C_ADDRESS
#  define SLAVE_I2C_ADDRESS           0x32
#endif
#  define I2C_BACKLIT_START 0x00
// Need 4 bytes for RGB (32 bit)
#  define I2C_RGB_START 0x01
#  define I2C_KEYMAP_START 0x05

#if (MATRIX_COLS > 8)
#  error "Currently only supports 8 COLS"
#endif
#  define TIMEOUT 100

#  ifndef SLAVE_I2C_ADDRESS
#    define SLAVE_I2C_ADDRESS 0x32
#  endif

// Get rows from other half over i2c
bool transport_master(matrix_row_t matrix[]) {
  int err = 0;
  i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, ROWS_PER_HAND * sizeof(matrix_row_t), TIMEOUT);

  // write backlight info
#ifdef BACKLIGHT_ENABLE
  if (BACKLIT_DIRTY) {
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) { goto i2c_error; }

    // Backlight location
    err = i2c_master_write(I2C_BACKLIT_START);
    if (err) { goto i2c_error; }

    // Write backlight
    i2c_master_write(get_backlight_level());

    BACKLIT_DIRTY = false;
  }
#endif

  err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
  if (err) { goto i2c_error; }

  // start of matrix stored at I2C_KEYMAP_START
  err = i2c_master_write(I2C_KEYMAP_START);
  if (err) { goto i2c_error; }

  // Start read
  err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
  if (err) { goto i2c_error; }

  if (!err) {
    int i;
    for (i = 0; i < ROWS_PER_HAND-1; ++i) {
      matrix[i] = i2c_master_read(I2C_ACK);
    }
    matrix[i] = i2c_master_read(I2C_NACK);
    i2c_master_stop();
  } else {
i2c_error: // the cable is disconnceted, or something else went wrong
    i2c_reset_state();
    return false;
#  ifdef BACKLIGHT_ENABLE
  static uint8_t prev_level = ~0;
  uint8_t        level      = get_backlight_level();
  if (level != prev_level) {
    i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIT_START, (void *)&level, sizeof(level), TIMEOUT);
    prev_level = level;
  }

#ifdef RGBLIGHT_ENABLE
  if (RGB_DIRTY) {
    err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
    if (err) { goto i2c_error; }

    // RGB Location
    err = i2c_master_write(I2C_RGB_START);
    if (err) { goto i2c_error; }

    uint32_t dword = eeconfig_read_rgblight();

    // Write RGB
    err = i2c_master_write_data(&dword, 4);
    if (err) { goto i2c_error; }

    RGB_DIRTY = false;
    i2c_master_stop();
#  endif

#  ifdef RGBLIGHT_ENABLE
  static uint32_t prev_rgb = ~0;
  uint32_t        rgb      = eeconfig_read_rgblight();
  if (rgb != prev_rgb) {
    i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgb, sizeof(rgb), TIMEOUT);
    prev_rgb = rgb;
  }
#endif
#  endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {

  for (int i = 0; i < ROWS_PER_HAND; ++i)
  {
    i2c_slave_buffer[I2C_KEYMAP_START + i] = matrix[i];
  }
  // Read Backlight Info
  #ifdef BACKLIGHT_ENABLE
  if (BACKLIT_DIRTY)
  {
    backlight_set(i2c_slave_buffer[I2C_BACKLIT_START]);
    BACKLIT_DIRTY = false;
  for (int i = 0; i < ROWS_PER_HAND * sizeof(matrix_row_t); ++i) {
    i2c_slave_reg[I2C_KEYMAP_START + i] = matrix[i];
  }
  #endif
  #ifdef RGBLIGHT_ENABLE
  if (RGB_DIRTY)
  {
    // Disable interupts (RGB data is big)
    cli();
    // Create new DWORD for RGB data
    uint32_t dword;

    // Fill the new DWORD with the data that was sent over
    uint8_t * dword_dat = (uint8_t *)(&dword);
    for (int i = 0; i < 4; i++)
    {
      dword_dat[i] = i2c_slave_buffer[I2C_RGB_START + i];
    }

    // Update the RGB now with the new data and set RGB_DIRTY to false
    rgblight_update_dword(dword);
    RGB_DIRTY = false;
    // Re-enable interupts now that RGB is set
    sei();
  }
  #endif
}

void transport_master_init(void) {
  i2c_master_init();
}
// Read Backlight Info
#  ifdef BACKLIGHT_ENABLE
  backlight_set(i2c_slave_reg[I2C_BACKLIT_START]);
#  endif

void transport_slave_init(void) {
  i2c_slave_init(SLAVE_I2C_ADDRESS);
#  ifdef RGBLIGHT_ENABLE
  uint32_t rgb = *(uint32_t *)(i2c_slave_reg + I2C_RGB_START);
  // Update the RGB with the new data
  rgblight_update_dword(rgb);
#  endif
}

#else // USE_SERIAL
void transport_master_init(void) { i2c_init(); }

void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); }

#include "serial.h"
#else  // USE_SERIAL

#  include "serial.h"

typedef struct _Serial_s2m_buffer_t {
  // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack


@@ 150,40 87,40 @@ typedef struct _Serial_s2m_buffer_t {
} Serial_s2m_buffer_t;

typedef struct _Serial_m2s_buffer_t {
#ifdef BACKLIGHT_ENABLE
    uint8_t backlight_level;
#endif
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    rgblight_config_t rgblight_config; //not yet use
    //
    // When MCUs on both sides drive their respective RGB LED chains,
    // it is necessary to synchronize, so it is necessary to communicate RGB information.
    // In that case, define the RGBLIGHT_SPLIT macro.
    //
    // Otherwise, if the master side MCU drives both sides RGB LED chains,
    // there is no need to communicate.
#endif
#  ifdef BACKLIGHT_ENABLE
  uint8_t           backlight_level;
#  endif
#  if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  rgblight_config_t rgblight_config;  // not yet use
  //
  // When MCUs on both sides drive their respective RGB LED chains,
  // it is necessary to synchronize, so it is necessary to communicate RGB
  // information. In that case, define the RGBLIGHT_SPLIT macro.
  //
  // Otherwise, if the master side MCU drives both sides RGB LED chains,
  // there is no need to communicate.
#  endif
} Serial_m2s_buffer_t;

volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
uint8_t volatile status0 = 0;
uint8_t volatile status0                       = 0;

SSTD_t transactions[] = {
  { (uint8_t *)&status0,
    sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer,
    sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer
  }
    {
        (uint8_t *)&status0,
        sizeof(serial_m2s_buffer),
        (uint8_t *)&serial_m2s_buffer,
        sizeof(serial_s2m_buffer),
        (uint8_t *)&serial_s2m_buffer,
    },
};

void transport_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }

void transport_slave_init(void)
{ soft_serial_target_init(transactions, TID_LIMIT(transactions)); }
void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); }

bool transport_master(matrix_row_t matrix[]) {

  if (soft_serial_transaction()) {
    return false;
  }


@@ 193,32 130,29 @@ bool transport_master(matrix_row_t matrix[]) {
    matrix[i] = serial_s2m_buffer.smatrix[i];
  }

  #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
    // Code to send RGB over serial goes here (not implemented yet)
  #endif
#  if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  // Code to send RGB over serial goes here (not implemented yet)
#  endif

  #ifdef BACKLIGHT_ENABLE
    // Write backlight level for slave to read
    serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
  #endif
#  ifdef BACKLIGHT_ENABLE
  // Write backlight level for slave to read
  serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
#  endif

  return true;
}

void transport_slave(matrix_row_t matrix[]) {

  // TODO: if MATRIX_COLS > 8 change to pack()
  for (int i = 0; i < ROWS_PER_HAND; ++i)
  {
  for (int i = 0; i < ROWS_PER_HAND; ++i) {
    serial_s2m_buffer.smatrix[i] = matrix[i];
  }
  #ifdef BACKLIGHT_ENABLE
    backlight_set(serial_m2s_buffer.backlight_level);
  #endif
  #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
  // Add serial implementation for RGB here
  #endif

#  ifdef BACKLIGHT_ENABLE
  backlight_set(serial_m2s_buffer.backlight_level);
#  endif
#  if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// Add serial implementation for RGB here
#  endif
}

#endif

M tmk_core/common/avr/suspend.c => tmk_core/common/avr/suspend.c +0 -9
@@ 11,9 11,6 @@
#include "led.h"
#include "host.h"
#include "rgblight_reconfig.h"
#ifdef SPLIT_KEYBOARD
  #include "split_flags.h"
#endif

#ifdef PROTOCOL_LUFA
	#include "lufa.h"


@@ 135,9 132,6 @@ static void power_down(uint8_t wdto) {
    is_suspended = true;
    rgblight_enabled = rgblight_config.enable;
    rgblight_disable_noeeprom();
    #ifdef SPLIT_KEYBOARD
        RGB_DIRTY = true;
    #endif
  }
#endif
  suspend_power_down_kb();


@@ 216,9 210,6 @@ void suspend_wakeup_init(void) {
      wait_ms(10);
    #endif
    rgblight_enable_noeeprom();
    #ifdef SPLIT_KEYBOARD
        RGB_DIRTY = true;
    #endif
  }
#ifdef RGBLIGHT_ANIMATIONS
  rgblight_timer_enable();