~ruther/qmk_firmware

19d7cbc8584ed5c0ec1f768a27767496eeae66f8 — TerryMathews 5 years ago 73f9039
M0lly: refactor OLED support and qmk-dfu bootloader (#8475)

6 files changed, 31 insertions(+), 322 deletions(-)

M keyboards/m0lly/config.h
D keyboards/m0lly/i2c.c
D keyboards/m0lly/i2c.h
D keyboards/m0lly/keymaps/default/config.h
M keyboards/m0lly/keymaps/default/keymap.c
M keyboards/m0lly/rules.mk
M keyboards/m0lly/config.h => keyboards/m0lly/config.h +5 -0
@@ 67,6 67,11 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE

#define QMK_ESC_OUTPUT A0 // usually COL
#define QMK_ESC_INPUT F4 // usually ROW
#define QMK_LED D2 // NumLock on M0lly
//#define QMK_SPEAKER C6

/*
 * Force NKRO
 *

D keyboards/m0lly/i2c.c => keyboards/m0lly/i2c.c +0 -166
@@ 1,166 0,0 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"

#ifdef USE_I2C

// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK)  =>  # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8

#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)

volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;

// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
  uint16_t lim = 0;
  while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
    lim++;

  // easier way, but will wait slightly longer
  // _delay_us(100);
}

// Setup twi to run at 100kHz
void i2c_master_init(void) {
  // no prescaler
  TWSR = 0;
  // Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
  // Check datasheets for more info.
  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}

// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
//          1 => error
uint8_t i2c_master_start(uint8_t address) {
  TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);

  i2c_delay();

  // check that we started successfully
  if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
    return 1;

  // send device address
  TWDR = address;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
    return 1; // slave did not acknowledge
  else
    return 0; // success
}


// Finish the i2c transaction.
void i2c_master_stop(void) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

  uint16_t lim = 0;
  while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
    lim++;
}

// Write one byte to the i2c slave.
// returns 0 => slave ACK
//         1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
  TWDR = data;
  TWCR = (1<<TWINT) | (1<<TWEN);

  i2c_delay();

  // check if the slave acknowledged us
  return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}

// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
  TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);

  i2c_delay();
  return TWDR;
}

void i2c_reset_state(void) {
  TWCR = 0;
}

void i2c_slave_init(uint8_t address) {
  TWAR = address << 0; // slave i2c address
  // TWEN  - twi enable
  // TWEA  - enable address acknowledgement
  // TWINT - twi interrupt flag
  // TWIE  - enable the twi interrupt
  TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}

ISR(TWI_vect);

ISR(TWI_vect) {
  uint8_t ack = 1;
  switch(TW_STATUS) {
    case TW_SR_SLA_ACK:
      // this device has been addressed as a slave receiver
      slave_has_register_set = false;
      break;

    case TW_SR_DATA_ACK:
      // this device has received data as a slave receiver
      // The first byte that we receive in this transaction sets the location
      // of the read/write location of the slaves memory that it exposes over
      // i2c.  After that, bytes will be written at slave_buffer_pos, incrementing
      // slave_buffer_pos after each write.
      if(!slave_has_register_set) {
        slave_buffer_pos = TWDR;
        // don't acknowledge the master if this memory loctaion is out of bounds
        if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
          ack = 0;
          slave_buffer_pos = 0;
        }
        slave_has_register_set = true;
      } else {
        i2c_slave_buffer[slave_buffer_pos] = TWDR;
        BUFFER_POS_INC();
      }
      break;

    case TW_ST_SLA_ACK:
    case TW_ST_DATA_ACK:
      // master has addressed this device as a slave transmitter and is
      // requesting data.
      TWDR = i2c_slave_buffer[slave_buffer_pos];
      BUFFER_POS_INC();
      break;

    case TW_BUS_ERROR: // something went wrong, reset twi state
      TWCR = 0;
    default:
      break;
  }
  // Reset everything, so we are ready for the next TWI interrupt
  TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}



#endif

D keyboards/m0lly/i2c.h => keyboards/m0lly/i2c.h +0 -49
@@ 1,49 0,0 @@
#ifndef I2C_H
#define I2C_H

#include <stdint.h>

#ifndef F_CPU
#define F_CPU 16000000UL
#endif

#define I2C_READ 1
#define I2C_WRITE 0

#define I2C_ACK 1
#define I2C_NACK 0

#define SLAVE_BUFFER_SIZE 0x10

// i2c SCL clock frequency
#define SCL_CLOCK  800000L

extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];

void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);


static inline unsigned char i2c_start_read(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_READ);
}

static inline unsigned char i2c_start_write(unsigned char addr) {
  return i2c_master_start((addr << 1) | I2C_WRITE);
}

// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);

#define i2c_read(ack)  (ack) ? i2c_readAck() : i2c_readNak();

#endif

D keyboards/m0lly/keymaps/default/config.h => keyboards/m0lly/keymaps/default/config.h +0 -24
@@ 1,24 0,0 @@
/* Copyright 2017 Mathias Andersson <wraul@dbox.se>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#pragma once

#define USE_I2C
#define SSD1306OLED
//#define OLED_ROTATE180
#define SSD1306_ADDRESS 0x3C

// place overrides here

M keyboards/m0lly/keymaps/default/keymap.c => keyboards/m0lly/keymaps/default/keymap.c +23 -78
@@ 13,11 13,8 @@
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
 
#include QMK_KEYBOARD_H
#include "LUFA/Drivers/Peripheral/TWI.h"
#include "i2c.h"
#include "ssd1306.h"


//Layers



@@ 26,13 23,6 @@ enum {
  FUNCTION,
};

bool screenWorks = 0;

//13 characters max without re-writing the "Layer: " format in iota_gfx_task_user()
static char layer_lookup[][14] = {"Base","Function"};



const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
  /* Keymap BASE: (Base Layer) Default Layer
   * 


@@ 78,72 68,27 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
  ),
};

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  return true;
}

void led_set_user(uint8_t usb_led) {

}

void matrix_init_user(void) {
  #ifdef USE_I2C
    i2c_master_init();
    #ifdef SSD1306OLED
      // calls code for the SSD1306 OLED
      _delay_ms(400);
      TWI_Init(TWI_BIT_PRESCALE_1, TWI_BITLENGTH_FROM_FREQ(1, 800000));
      if ( iota_gfx_init() ) { // turns on the display
        screenWorks = 1;
      }
    #endif
  #endif
  #ifdef AUDIO_ENABLE
    startup_user();
  #endif
}

void matrix_scan_user(void) {
  #ifdef SSD1306OLED
    if ( screenWorks ) {
      iota_gfx_task();  // this is what updates the display continuously
    };
  #endif
}

void matrix_update(struct CharacterMatrix *dest,
                          const struct CharacterMatrix *source) {
  if (memcmp(dest->display, source->display, sizeof(dest->display))) {
    memcpy(dest->display, source->display, sizeof(dest->display));
    dest->dirty = true;
  }
}

void iota_gfx_task_user(void) {
  #if DEBUG_TO_SCREEN
    if (debug_enable) {
      return;
#ifdef OLED_DRIVER_ENABLE
void oled_task_user(void) {
    oled_write_P(PSTR("TKC1800\n"),false);
	// Host Keyboard Layer Status
    oled_write_P(PSTR("Layer: "), false);

    switch (get_highest_layer(layer_state)) {
        case BASE:
            oled_write_P(PSTR("Base\n"), false);
            break;
        case FUNCTION:
            oled_write_P(PSTR("Function\n"), false);
            break;
        default:
            // Or use the write_ln shortcut over adding '\n' to the end of your string
            oled_write_ln_P(PSTR("Undefined"), false);
    }
  #endif

  struct CharacterMatrix matrix;

  matrix_clear(&matrix);
  matrix_write_P(&matrix, PSTR("TKC M0LLY"));

  uint8_t layer = biton32(layer_state);

  char buf[40];
  snprintf(buf,sizeof(buf), "Undef-%d", layer);
  matrix_write_P(&matrix, PSTR("\nLayer: "));
  matrix_write(&matrix, layer_lookup[layer]);

  // Host Keyboard LED Status
  char led[40];
    snprintf(led, sizeof(led), "\n\n%s  %s  %s",
            (host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) ? "NUMLOCK" : "       ",
            (host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) ? "CAPS" : "    ",
            (host_keyboard_leds() & (1<<USB_LED_SCROLL_LOCK)) ? "SCLK" : "    ");
  matrix_write(&matrix, led);
  matrix_update(&display, &matrix);
	// Host Keyboard LED Status
    led_t led_state = host_keyboard_led_state();
    oled_write_P(led_state.num_lock ? PSTR("NUM ") : PSTR("    "), false);
    oled_write_P(led_state.caps_lock ? PSTR("CAP ") : PSTR("    "), false);
    oled_write_P(led_state.scroll_lock ? PSTR("SCR ") : PSTR("    "), false);
}
#endif
\ No newline at end of file

M keyboards/m0lly/rules.mk => keyboards/m0lly/rules.mk +3 -5
@@ 9,12 9,12 @@ MCU = at90usb1286
#   QMK DFU      qmk-dfu
#   ATmega32A    bootloadHID
#   ATmega328P   USBasp
BOOTLOADER = atmel-dfu
BOOTLOADER = qmk-dfu

# Build Options
#   change yes to no to disable
#
BOOTMAGIC_ENABLE = yes      # Virtual DIP switch configuration
BOOTMAGIC_ENABLE = lite      # Virtual DIP switch configuration
MOUSEKEY_ENABLE = yes       # Mouse keys
EXTRAKEY_ENABLE = yes       # Audio control and System control
CONSOLE_ENABLE = yes        # Console for debug


@@ 29,6 29,4 @@ MIDI_ENABLE = no            # MIDI controls
UNICODE_ENABLE = no         # Unicode
BLUETOOTH_ENABLE = no       # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no           # Audio output on port C6

SRC = i2c.c \
	  ssd1306.c
OLED_DRIVER_ENABLE = yes
\ No newline at end of file