~ruther/qmk_firmware

14b7602a65dedaf51db1c9288144765d43a83a15 — Jack Humbert 7 years ago 46dca12
Adds IS31FL3731 RGB Matrix Implementation (#2910)

* adds is31fl3731 rgb matrix implementation

* fix build script for force pushes

* allow bootloader size to be overwritten

* adds planck light implementation

* split led config into 2 arrays

* idk

* betterize register handling

* update planck implementation

* update planck

* refine rgb interface

* cleanup names, rgb matrix

* start documentation

* finish up docs

* add effects list

* clean-up merge

* add RGB_MATRIX_SKIP_FRAMES

* add support for at90usb1286 to bootloader options
M bootloader.mk => bootloader.mk +19 -4
@@ 32,17 32,32 @@
ifeq ($(strip $(BOOTLOADER)), atmel-dfu)
    OPT_DEFS += -DBOOTLOADER_ATMEL_DFU
    OPT_DEFS += -DBOOTLOADER_DFU
    BOOTLOADER_SIZE = 4096
    ifeq ($(strip $(MCU)), atmega32u4)
      BOOTLOADER_SIZE = 4096
    endif
    ifeq ($(strip $(MCU)), at90usb1286)
      BOOTLOADER_SIZE = 8192
    endif
endif
ifeq ($(strip $(BOOTLOADER)), lufa-dfu)
    OPT_DEFS += -DBOOTLOADER_LUFA_DFU
    OPT_DEFS += -DBOOTLOADER_DFU
    BOOTLOADER_SIZE = 4096
    ifeq ($(strip $(MCU)), atmega32u4)
      BOOTLOADER_SIZE = 4096
    endif
    ifeq ($(strip $(MCU)), at90usb1286)
      BOOTLOADER_SIZE = 8192
    endif
endif
ifeq ($(strip $(BOOTLOADER)), qmk-dfu)
    OPT_DEFS += -DBOOTLOADER_QMK_DFU
    OPT_DEFS += -DBOOTLOADER_DFU
    BOOTLOADER_SIZE = 4096
    ifeq ($(strip $(MCU)), atmega32u4)
      BOOTLOADER_SIZE = 4096
    endif
    ifeq ($(strip $(MCU)), at90usb1286)
      BOOTLOADER_SIZE = 8192
    endif
endif
ifeq ($(strip $(BOOTLOADER)), halfkay)
    OPT_DEFS += -DBOOTLOADER_HALFKAY


@@ 59,4 74,4 @@ endif

ifdef BOOTLOADER_SIZE
    OPT_DEFS += -DBOOTLOADER_SIZE=$(strip $(BOOTLOADER_SIZE))
endif
\ No newline at end of file
endif

M common_features.mk => common_features.mk +9 -0
@@ 114,6 114,15 @@ ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
    endif
endif

ifeq ($(strip $(RGB_MATRIX_ENABLE)), yes)
    OPT_DEFS += -DRGB_MATRIX_ENABLE
    SRC += is31fl3731.c
    SRC += TWIlib.c
    SRC += $(QUANTUM_DIR)/color.c
    SRC += $(QUANTUM_DIR)/rgb_matrix.c
    CIE1931_CURVE = yes
endif

ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
    OPT_DEFS += -DTAP_DANCE_ENABLE
    SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c

A docs/feature_rgb_matrix.md => docs/feature_rgb_matrix.md +141 -0
@@ 0,0 1,141 @@
# RGB Matrix Lighting

There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your `rules.mk`:

    RGB_MATRIX_ENABLE = yes

Configure the hardware via your `config.h`:

	// This is a 7-bit address, that gets left-shifted and bit 0
	// set to 0 for write, 1 for read (as per I2C protocol)
	// The address will vary depending on your wiring:
	// 0b1110100 AD <-> GND
	// 0b1110111 AD <-> VCC
	// 0b1110101 AD <-> SCL
	// 0b1110110 AD <-> SDA
	#define DRIVER_ADDR_1 0b1110100
	#define DRIVER_ADDR_2 0b1110110

	#define DRIVER_COUNT 2
	#define DRIVER_1_LED_TOTAL 25
	#define DRIVER_2_LED_TOTAL 24
	#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL

Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.

Define these arrays listing all the LEDs in your `<keyboard>.c`:

	const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
	/* Refer to IS31 manual for these locations
	 *   driver
	 *   |  R location
	 *   |  |      G location
	 *   |  |      |      B location
	 *   |  |      |      | */
	    {0, C1_3,  C2_3,  C3_3},
	    ....
	}

Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet](http://www.issi.com/WW/pdf/31FL3731.pdf). The `driver` is the index of the driver you defined in your `config.h` (`0` or `1` right now).

	const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
	/* {row | col << 4}
	 *    |           {x=0..224, y=0..64}
	 *    |              |               modifier
	 *    |              |                 | */
	    {{0|(0<<4)},   {20.36*0, 21.33*0}, 1},
	    {{0|(1<<4)},   {20.36*1, 21.33*0}, 1},
	    ....
	}

The format for the matrix position used in this array is `{row | (col << 4)}`. The `x` is between (inclusive) 0-224, and `y` is between (inclusive) 0-64. The easiest way to calculate these positions is:

    x = 224 / ( NUMBER_OF_ROWS - 1 ) * ROW_POSITION
    y = 64 / (NUMBER_OF_COLS - 1 ) * COL_POSITION

Where all variables are decimels/floats.

`modifier` is a boolean, whether or not a certain key is considered a modifier (used in some effects).

## Keycodes

All RGB keycodes are currently shared with the RGBLIGHT system:

	* `RGB_TOG` - toggle
	* `RGB_MOD` - cycle through modes
	* `RGB_HUI` - increase hue
	* `RGB_HUD` - decrease hue
	* `RGB_SAI` - increase saturation
	* `RGB_SAD` - decrease saturation
	* `RGB_VAI` - increase value
	* `RGB_VAD` - decrease value


	* `RGB_MODE_*` keycodes will generally work, but are not currently mapped to the correct effects for the RGB Matrix system

## RGB Matrix Effects

These are the effects that are currently available:

	enum rgb_matrix_effects {
		RGB_MATRIX_SOLID_COLOR = 1,
	    RGB_MATRIX_SOLID_REACTIVE,
	    RGB_MATRIX_ALPHAS_MODS,
	    RGB_MATRIX_DUAL_BEACON,
	    RGB_MATRIX_GRADIENT_UP_DOWN,
	    RGB_MATRIX_RAINDROPS,
	    RGB_MATRIX_CYCLE_ALL,
	    RGB_MATRIX_CYCLE_LEFT_RIGHT,
	    RGB_MATRIX_CYCLE_UP_DOWN,
	    RGB_MATRIX_RAINBOW_BEACON,
	    RGB_MATRIX_RAINBOW_PINWHEELS,
	    RGB_MATRIX_RAINBOW_MOVING_CHEVRON,
	    RGB_MATRIX_JELLYBEAN_RAINDROPS,
	#ifdef RGB_MATRIX_KEYPRESSES
	    RGB_MATRIX_SPLASH,
	    RGB_MATRIX_MULTISPLASH,
	    RGB_MATRIX_SOLID_SPLASH,
	    RGB_MATRIX_SOLID_MULTISPLASH,
	#endif
	    RGB_MATRIX_EFFECT_MAX
	};

## Custom layer effects

Custom layer effects can be done by defining this in your `<keyboard>.c`:

    void rgb_matrix_indicators_kb(void) {
    	// rgb_matrix_set_color(index, red, green, blue);
    }

A similar function works in the keymap as `rgb_matrix_indicators_user`.

## Additional `config.h` Options

	#define RGB_MATRIX_KEYPRESSES // reacts to keypresses (will slow down matrix scan by a lot)
	#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
	#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
	#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
    #define RGB_MATRIX_SKIP_FRAMES 1 // number of frames to skip when displaying animations (0 is full effect)

## EEPROM storage

The EEPROM for it is currently shared with the RGBLIGHT system (it's generally assumed only one RGB would be used at a time), but could be configured to use its own 32bit address with:

    #define EECONFIG_RGB_MATRIX (uint32_t *)16

Where `16` is an unused index from `eeconfig.h`.

## Suspended state

To use the suspend feature, add this to your `<keyboard>.c`:

	void suspend_power_down_kb(void)
	{
	    rgb_matrix_set_suspend_state(true);
	}

	void suspend_wakeup_init_kb(void)
	{
	    rgb_matrix_set_suspend_state(false);
	}

A drivers/avr/TWIlib.c => drivers/avr/TWIlib.c +232 -0
@@ 0,0 1,232 @@
/*
 * TWIlib.c
 *
 *  Created: 6/01/2014 10:41:33 PM
 *  Author: Chris Herring
 *  http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
 */ 

#include <avr/io.h>
#include <avr/interrupt.h>
#include "TWIlib.h"
#include "util/delay.h"

void TWIInit()
{
	TWIInfo.mode = Ready;
	TWIInfo.errorCode = 0xFF;
	TWIInfo.repStart = 0;
	// Set pre-scalers (no pre-scaling)
	TWSR = 0;
	// Set bit rate
	TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
	// Enable TWI and interrupt
	TWCR = (1 << TWIE) | (1 << TWEN);
}

uint8_t isTWIReady()
{
	if ( (TWIInfo.mode == Ready) | (TWIInfo.mode == RepeatedStartSent) )
	{
		return 1;
	}
	else
	{
		return 0;
	}
}

uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart)
{
	if (dataLen <= TXMAXBUFLEN)
	{
		// Wait until ready
		while (!isTWIReady()) {_delay_us(1);}
		// Set repeated start mode
		TWIInfo.repStart = repStart;
		// Copy data into the transmit buffer
		uint8_t *data = (uint8_t *)TXdata;
		for (int i = 0; i < dataLen; i++)
		{
			TWITransmitBuffer[i] = data[i];
		}
		// Copy transmit info to global variables
		TXBuffLen = dataLen;
		TXBuffIndex = 0;
		
		// If a repeated start has been sent, then devices are already listening for an address
		// and another start does not need to be sent. 
		if (TWIInfo.mode == RepeatedStartSent)
		{
			TWIInfo.mode = Initializing;
			TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
			TWISendTransmit(); // Send the data
		}
		else // Otherwise, just send the normal start signal to begin transmission.
		{
			TWIInfo.mode = Initializing;
			TWISendStart();
		}
		
	}
	else
	{
		return 1; // return an error if data length is longer than buffer
	}
	return 0;
}

uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart)
{
	// Check if number of bytes to read can fit in the RXbuffer
	if (bytesToRead < RXMAXBUFLEN)
	{
		// Reset buffer index and set RXBuffLen to the number of bytes to read
		RXBuffIndex = 0;
		RXBuffLen = bytesToRead;
		// Create the one value array for the address to be transmitted
		uint8_t TXdata[1];
		// Shift the address and AND a 1 into the read write bit (set to write mode)
		TXdata[0] = (TWIaddr << 1) | 0x01;
		// Use the TWITransmitData function to initialize the transfer and address the slave
		TWITransmitData(TXdata, 1, repStart);
	}
	else
	{
		return 0;
	}
	return 1;
}

ISR (TWI_vect)
{
	switch (TWI_STATUS)
	{
		// ----\/ ---- MASTER TRANSMITTER OR WRITING ADDRESS ----\/ ----  //
		case TWI_MT_SLAW_ACK: // SLA+W transmitted and ACK received
		// Set mode to Master Transmitter
		TWIInfo.mode = MasterTransmitter;
		case TWI_START_SENT: // Start condition has been transmitted
		case TWI_MT_DATA_ACK: // Data byte has been transmitted, ACK received
			if (TXBuffIndex < TXBuffLen) // If there is more data to send
			{
				TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
				TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
				TWISendTransmit(); // Send the data
			}
			// This transmission is complete however do not release bus yet
			else if (TWIInfo.repStart)
			{
				TWIInfo.errorCode = 0xFF;
				TWISendStart();
			}
			// All transmissions are complete, exit
			else
			{
				TWIInfo.mode = Ready;
				TWIInfo.errorCode = 0xFF;
				TWISendStop();
			}
			break;
		
		// ----\/ ---- MASTER RECEIVER ----\/ ----  //
		
		case TWI_MR_SLAR_ACK: // SLA+R has been transmitted, ACK has been received
			// Switch to Master Receiver mode
			TWIInfo.mode = MasterReceiver;
			// If there is more than one byte to be read, receive data byte and return an ACK
			if (RXBuffIndex < RXBuffLen-1)
			{
				TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
				TWISendACK();
			}
			// Otherwise when a data byte (the only data byte) is received, return NACK
			else
			{
				TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
				TWISendNACK();
			}
			break;
		
		case TWI_MR_DATA_ACK: // Data has been received, ACK has been transmitted.
		
			/// -- HANDLE DATA BYTE --- ///
			TWIReceiveBuffer[RXBuffIndex++] = TWDR;
			// If there is more than one byte to be read, receive data byte and return an ACK
			if (RXBuffIndex < RXBuffLen-1)
			{
				TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
				TWISendACK();
			}
			// Otherwise when a data byte (the only data byte) is received, return NACK
			else
			{
				TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
				TWISendNACK();
			}
			break;
		
		case TWI_MR_DATA_NACK: // Data byte has been received, NACK has been transmitted. End of transmission.
		
			/// -- HANDLE DATA BYTE --- ///
			TWIReceiveBuffer[RXBuffIndex++] = TWDR;	
			// This transmission is complete however do not release bus yet
			if (TWIInfo.repStart)
			{
				TWIInfo.errorCode = 0xFF;
				TWISendStart();
			}
			// All transmissions are complete, exit
			else
			{
				TWIInfo.mode = Ready;
				TWIInfo.errorCode = 0xFF;
				TWISendStop();
			}
			break;
		
		// ----\/ ---- MT and MR common ----\/ ---- //
		
		case TWI_MR_SLAR_NACK: // SLA+R transmitted, NACK received
		case TWI_MT_SLAW_NACK: // SLA+W transmitted, NACK received
		case TWI_MT_DATA_NACK: // Data byte has been transmitted, NACK received
		case TWI_LOST_ARBIT: // Arbitration has been lost
			// Return error and send stop and set mode to ready
			if (TWIInfo.repStart)
			{				
				TWIInfo.errorCode = TWI_STATUS;
				TWISendStart();
			}
			// All transmissions are complete, exit
			else
			{
				TWIInfo.mode = Ready;
				TWIInfo.errorCode = TWI_STATUS;
				TWISendStop();
			}
			break;
		case TWI_REP_START_SENT: // Repeated start has been transmitted
			// Set the mode but DO NOT clear TWINT as the next data is not yet ready
			TWIInfo.mode = RepeatedStartSent;
			break;
		
		// ----\/ ---- SLAVE RECEIVER ----\/ ----  //
		
		// TODO  IMPLEMENT SLAVE RECEIVER FUNCTIONALITY
		
		// ----\/ ---- SLAVE TRANSMITTER ----\/ ----  //
		
		// TODO  IMPLEMENT SLAVE TRANSMITTER FUNCTIONALITY
		
		// ----\/ ---- MISCELLANEOUS STATES ----\/ ----  //
		case TWI_NO_RELEVANT_INFO: // It is not really possible to get into this ISR on this condition
								   // Rather, it is there to be manually set between operations
			break;
		case TWI_ILLEGAL_START_STOP: // Illegal START/STOP, abort and return error
			TWIInfo.errorCode = TWI_ILLEGAL_START_STOP;
			TWIInfo.mode = Ready;
			TWISendStop();
			break;
	}
	
}

A drivers/avr/TWIlib.h => drivers/avr/TWIlib.h +82 -0
@@ 0,0 1,82 @@
/*
 * TWIlib.h
 *
 * Created: 6/01/2014 10:38:42 PM
 *  Author: Chris Herring
 *  http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
 */ 


#ifndef TWILIB_H_
#define TWILIB_H_
// TWI bit rate (was 100000)
#define TWI_FREQ 400000
// Get TWI status
#define TWI_STATUS	(TWSR & 0xF8) 
// Transmit buffer length
#define TXMAXBUFLEN 20
// Receive buffer length
#define RXMAXBUFLEN 20
// Global transmit buffer
uint8_t TWITransmitBuffer[TXMAXBUFLEN];
// Global receive buffer
volatile uint8_t TWIReceiveBuffer[RXMAXBUFLEN];
// Buffer indexes
volatile int TXBuffIndex; // Index of the transmit buffer. Is volatile, can change at any time.
int RXBuffIndex; // Current index in the receive buffer
// Buffer lengths
int TXBuffLen; // The total length of the transmit buffer
int RXBuffLen; // The total number of bytes to read (should be less than RXMAXBUFFLEN)

typedef enum {
	Ready,
	Initializing,
	RepeatedStartSent,
	MasterTransmitter,
	MasterReceiver,
	SlaceTransmitter,
	SlaveReciever
	} TWIMode;

 typedef struct TWIInfoStruct{
	TWIMode mode;
	uint8_t errorCode;
	uint8_t repStart;	
	}TWIInfoStruct;
TWIInfoStruct TWIInfo;


// TWI Status Codes
#define TWI_START_SENT			0x08 // Start sent
#define TWI_REP_START_SENT		0x10 // Repeated Start sent
// Master Transmitter Mode
#define TWI_MT_SLAW_ACK			0x18 // SLA+W sent and ACK received
#define TWI_MT_SLAW_NACK		0x20 // SLA+W sent and NACK received
#define TWI_MT_DATA_ACK			0x28 // DATA sent and ACK received
#define TWI_MT_DATA_NACK		0x30 // DATA sent and NACK received
// Master Receiver Mode
#define TWI_MR_SLAR_ACK			0x40 // SLA+R sent, ACK received
#define TWI_MR_SLAR_NACK		0x48 // SLA+R sent, NACK received
#define TWI_MR_DATA_ACK			0x50 // Data received, ACK returned
#define TWI_MR_DATA_NACK		0x58 // Data received, NACK returned

// Miscellaneous States
#define TWI_LOST_ARBIT			0x38 // Arbitration has been lost
#define TWI_NO_RELEVANT_INFO	0xF8 // No relevant information available
#define TWI_ILLEGAL_START_STOP	0x00 // Illegal START or STOP condition has been detected
#define TWI_SUCCESS				0xFF // Successful transfer, this state is impossible from TWSR as bit2 is 0 and read only


#define TWISendStart()		(TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)|(1<<TWIE)) // Send the START signal, enable interrupts and TWI, clear TWINT flag to resume transfer.
#define TWISendStop()		(TWCR = (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)|(1<<TWIE)) // Send the STOP signal, enable interrupts and TWI, clear TWINT flag.
#define TWISendTransmit()	(TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // Used to resume a transfer, clear TWINT and ensure that TWI and interrupts are enabled.
#define TWISendACK()		(TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)|(1<<TWEA)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled and respond with an ACK if the device is addressed as a slave or after it receives a byte.
#define TWISendNACK()		(TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled but DO NOT respond with an ACK if the device is addressed as a slave or after it receives a byte.

// Function declarations
uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart);
void TWIInit(void);
uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart);
uint8_t isTWIReady(void);

#endif // TWICOMMS_H_ 
\ No newline at end of file

A drivers/avr/is31fl3731.c => drivers/avr/is31fl3731.c +258 -0
@@ 0,0 1,258 @@
/* Copyright 2017 Jason Williams
 * Copyright 2018 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "is31fl3731.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/delay.h>
#include <string.h>
#include "TWIlib.h"
#include "progmem.h"

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define ISSI_ADDR_DEFAULT 0x74

#define ISSI_REG_CONFIG  0x00
#define ISSI_REG_CONFIG_PICTUREMODE 0x00
#define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08
#define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18

#define ISSI_CONF_PICTUREMODE 0x00
#define ISSI_CONF_AUTOFRAMEMODE 0x04
#define ISSI_CONF_AUDIOMODE 0x08

#define ISSI_REG_PICTUREFRAME  0x01

#define ISSI_REG_SHUTDOWN 0x0A
#define ISSI_REG_AUDIOSYNC 0x06

#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B    // helpfully called 'page nine'

// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[TXMAXBUFLEN];

// These buffers match the IS31FL3731 PWM registers 0x24-0xB3.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][144];
bool g_pwm_buffer_update_required = false;

uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } };
bool g_led_control_registers_update_required = false;

// This is the bit pattern in the LED control registers
// (for matrix A, add one to register for matrix B)
//
//  reg -  b7  b6  b5  b4  b3  b2  b1  b0
// 0x00 - R08,R07,R06,R05,R04,R03,R02,R01
// 0x02 - G08,G07,G06,G05,G04,G03,G02,R00
// 0x04 - B08,B07,B06,B05,B04,B03,G01,G00
// 0x06 -  - , - , - , - , - ,B02,B01,B00
// 0x08 -  - , - , - , - , - , - , - , -
// 0x0A - B17,B16,B15, - , - , - , - , -
// 0x0C - G17,G16,B14,B13,B12,B11,B10,B09
// 0x0E - R17,G15,G14,G13,G12,G11,G10,G09
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09


void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
	g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
	g_twi_transfer_buffer[1] = reg;
	g_twi_transfer_buffer[2] = data;

	// Set the error code to have no relevant information
	TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
	// Continuously attempt to transmit data until a successful transmission occurs
	//while ( TWIInfo.errorCode != 0xFF )
	//{
		TWITransmitData( g_twi_transfer_buffer, 3, 0 );
	//}
}

void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
	// assumes bank is already selected

	// transmit PWM registers in 9 transfers of 16 bytes
	// g_twi_transfer_buffer[] is 20 bytes

	// set the I2C address
	g_twi_transfer_buffer[0] = (addr << 1) | 0x00;

	// iterate over the pwm_buffer contents at 16 byte intervals
	for ( int i = 0; i < 144; i += 16 )
	{
		// set the first register, e.g. 0x24, 0x34, 0x44, etc.
		g_twi_transfer_buffer[1] = 0x24 + i;
		// copy the data from i to i+15
		// device will auto-increment register for data after the first byte
		// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
		for ( int j = 0; j < 16; j++ )
		{
			g_twi_transfer_buffer[2 + j] = pwm_buffer[i + j];
		}

		// Set the error code to have no relevant information
		TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
		// Continuously attempt to transmit data until a successful transmission occurs
		while ( TWIInfo.errorCode != 0xFF )
		{
			TWITransmitData( g_twi_transfer_buffer, 16 + 2, 0 );
		}
	}
}

void IS31FL3731_init( uint8_t addr )
{
	// In order to avoid the LEDs being driven with garbage data
	// in the LED driver's PWM registers, first enable software shutdown,
	// then set up the mode and other settings, clear the PWM registers,
	// then disable software shutdown.

	// select "function register" bank
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// enable software shutdown
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
	// this delay was copied from other drivers, might not be needed
	_delay_ms( 10 );

	// picture mode
	IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
	// display frame 0
	IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
	// audio sync off
	IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );

	// select bank 0
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );

	// turn off all LEDs in the LED control register
	for ( int i = 0x00; i <= 0x11; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// turn off all LEDs in the blink control register (not really needed)
	for ( int i = 0x12; i <= 0x23; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// set PWM on all LEDs to 0
	for ( int i = 0x24; i <= 0xB3; i++ )
	{
		IS31FL3731_write_register( addr, i, 0x00 );
	}

	// select "function register" bank
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );

	// disable software shutdown
	IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );

	// select bank 0 and leave it selected.
	// most usage after initialization is just writing PWM buffers in bank 0
	// as there's not much point in double-buffering
	IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
}

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
{
	if ( index >= 0 && index < DRIVER_LED_TOTAL ) {
		is31_led led = g_is31_leds[index];

		// Subtract 0x24 to get the second index of g_pwm_buffer
		g_pwm_buffer[led.driver][led.r - 0x24] = red;
		g_pwm_buffer[led.driver][led.g - 0x24] = green;
		g_pwm_buffer[led.driver][led.b - 0x24] = blue;
		g_pwm_buffer_update_required = true;
	}
}

void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue )
{
	for ( int i = 0; i < DRIVER_LED_TOTAL; i++ )
	{
		IS31FL3731_set_color( i, red, green, blue );
	}
}

void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue )
{
	is31_led led = g_is31_leds[index];

  uint8_t control_register_r = (led.r - 0x24) / 8;
  uint8_t control_register_g = (led.g - 0x24) / 8;
  uint8_t control_register_b = (led.b - 0x24) / 8;
  uint8_t bit_r = (led.r - 0x24) % 8;
  uint8_t bit_g = (led.g - 0x24) % 8;
  uint8_t bit_b = (led.b - 0x24) % 8;

	if ( red ) {
		g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
	} else {
		g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
	}
	if ( green ) {
		g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
	} else {
		g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
	}
	if ( blue ) {
		g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
	} else {
		g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
	}

	g_led_control_registers_update_required = true;


}

void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
	if ( g_pwm_buffer_update_required )
	{
		IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
		IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
	}
	g_pwm_buffer_update_required = false;
}

void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
	if ( g_led_control_registers_update_required )
	{
		for ( int i=0; i<18; i++ )
		{
			IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
			IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
		}
	}
}


A drivers/avr/is31fl3731.h => drivers/avr/is31fl3731.h +214 -0
@@ 0,0 1,214 @@
/* Copyright 2017 Jason Williams
 * Copyright 2018 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#ifndef IS31FL3731_DRIVER_H
#define IS31FL3731_DRIVER_H

#include <stdint.h>
#include <stdbool.h>

typedef struct is31_led {
	uint8_t driver:2;
  uint8_t r;
  uint8_t g;
  uint8_t b;
} __attribute__((packed)) is31_led;

extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];

void IS31FL3731_init( uint8_t addr );
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );

void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );

void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue );

// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );

#define C1_1  0x24
#define C1_2  0x25
#define C1_3  0x26
#define C1_4  0x27
#define C1_5  0x28
#define C1_6  0x29
#define C1_7  0x2A
#define C1_8  0x2B

#define C1_9  0x2C
#define C1_10 0x2D
#define C1_11 0x2E
#define C1_12 0x2F
#define C1_13 0x30
#define C1_14 0x31
#define C1_15 0x32
#define C1_16 0x33

#define C2_1  0x34
#define C2_2  0x35
#define C2_3  0x36
#define C2_4  0x37
#define C2_5  0x38
#define C2_6  0x39
#define C2_7  0x3A
#define C2_8  0x3B

#define C2_9  0x3C
#define C2_10 0x3D
#define C2_11 0x3E
#define C2_12 0x3F
#define C2_13 0x40
#define C2_14 0x41
#define C2_15 0x42
#define C2_16 0x43

#define C3_1  0x44
#define C3_2  0x45
#define C3_3  0x46
#define C3_4  0x47
#define C3_5  0x48
#define C3_6  0x49
#define C3_7  0x4A
#define C3_8  0x4B

#define C3_9  0x4C
#define C3_10 0x4D
#define C3_11 0x4E
#define C3_12 0x4F
#define C3_13 0x50
#define C3_14 0x51
#define C3_15 0x52
#define C3_16 0x53

#define C4_1  0x54
#define C4_2  0x55
#define C4_3  0x56
#define C4_4  0x57
#define C4_5  0x58
#define C4_6  0x59
#define C4_7  0x5A
#define C4_8  0x5B

#define C4_9  0x5C
#define C4_10 0x5D
#define C4_11 0x5E
#define C4_12 0x5F
#define C4_13 0x60
#define C4_14 0x61
#define C4_15 0x62
#define C4_16 0x63

#define C5_1  0x64
#define C5_2  0x65
#define C5_3  0x66
#define C5_4  0x67
#define C5_5  0x68
#define C5_6  0x69
#define C5_7  0x6A
#define C5_8  0x6B

#define C5_9  0x6C
#define C5_10 0x6D
#define C5_11 0x6E
#define C5_12 0x6F
#define C5_13 0x70
#define C5_14 0x71
#define C5_15 0x72
#define C5_16 0x73

#define C6_1  0x74
#define C6_2  0x75
#define C6_3  0x76
#define C6_4  0x77
#define C6_5  0x78
#define C6_6  0x79
#define C6_7  0x7A
#define C6_8  0x7B

#define C6_9  0x7C
#define C6_10 0x7D
#define C6_11 0x7E
#define C6_12 0x7F
#define C6_13 0x80
#define C6_14 0x81
#define C6_15 0x82
#define C6_16 0x83

#define C7_1  0x84
#define C7_2  0x85
#define C7_3  0x86
#define C7_4  0x87
#define C7_5  0x88
#define C7_6  0x89
#define C7_7  0x8A
#define C7_8  0x8B

#define C7_9  0x8C
#define C7_10 0x8D
#define C7_11 0x8E
#define C7_12 0x8F
#define C7_13 0x90
#define C7_14 0x91
#define C7_15 0x92
#define C7_16 0x93

#define C8_1  0x94
#define C8_2  0x95
#define C8_3  0x96
#define C8_4  0x97
#define C8_5  0x98
#define C8_6  0x99
#define C8_7  0x9A
#define C8_8  0x9B

#define C8_9  0x9C
#define C8_10 0x9D
#define C8_11 0x9E
#define C8_12 0x9F
#define C8_13 0xA0
#define C8_14 0xA1
#define C8_15 0xA2
#define C8_16 0xA3

#define C9_1  0xA4
#define C9_2  0xA5
#define C9_3  0xA6
#define C9_4  0xA7
#define C9_5  0xA8
#define C9_6  0xA9
#define C9_7  0xAA
#define C9_8  0xAB

#define C9_9  0xAC
#define C9_10 0xAD
#define C9_11 0xAE
#define C9_12 0xAF
#define C9_13 0xB0
#define C9_14 0xB1
#define C9_15 0xB2
#define C9_16 0xB3



#endif // IS31FL3731_DRIVER_H

M keyboards/planck/light/config.h => keyboards/planck/light/config.h +18 -1
@@ 24,5 24,22 @@

#define NO_USB_STARTUP_CHECK

#define PLANCK_MIT_LAYOUT

#endif
\ No newline at end of file
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110

#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL


#endif

M keyboards/planck/light/light.c => keyboards/planck/light/light.c +135 -6
@@ 1,5 1,4 @@
/* Copyright 2017 Jason Williams
 * Copyright 2017 Jack Humbert
/* Copyright 2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by


@@ 17,6 16,127 @@

#include "light.h"

const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
 *   driver
 *   |  R location
 *   |  |      G location
 *   |  |      |      B location
 *   |  |      |      | */
    {0, C1_3,  C2_3,  C3_3},
    {0, C1_4,  C2_4,  C3_4},
    {0, C1_5,  C2_5,  C3_5},
    {0, C1_11, C2_11, C3_11},
    {0, C1_12, C2_12, C3_12},
    {0, C1_13, C2_13, C3_13},
    {1, C1_3,  C2_3,  C3_3},
    {1, C1_4,  C2_4,  C3_4},
    {1, C1_5,  C2_5,  C3_5},
    {1, C1_11, C2_11, C3_11},
    {1, C1_12, C2_12, C3_12},
    {1, C1_13, C2_13, C3_13},

    {0, C1_6,  C2_6,  C3_6},
    {0, C1_7,  C2_7,  C3_7},
    {0, C1_8,  C2_8,  C3_8},
    {0, C1_14, C2_14, C3_14},
    {0, C1_15, C2_15, C3_15},
    {0, C1_16, C2_16, C3_16},
    {1, C1_6,  C2_6,  C3_6},
    {1, C1_7,  C2_7,  C3_7},
    {1, C1_8,  C2_8,  C3_8},
    {1, C1_14, C2_14, C3_14},
    {1, C1_15, C2_15, C3_15},
    {1, C1_16, C2_16, C3_16},

    {0, C9_1,  C8_1,  C7_1},
    {0, C9_2,  C8_2,  C7_2},
    {0, C9_3,  C8_3,  C7_3},
    {0, C9_9,  C8_9,  C7_9},
    {0, C9_10, C8_10, C7_10},
    {0, C9_11, C8_11, C7_11},
    {1, C9_1,  C8_1,  C7_1},
    {1, C9_2,  C8_2,  C7_2},
    {1, C9_3,  C8_3,  C7_3},
    {1, C9_9,  C8_9,  C7_9},
    {1, C9_10, C8_10, C7_10},
    {1, C9_11, C8_11, C7_11},

    {0, C9_4,  C8_4,  C7_4},
    {0, C9_5,  C8_5,  C7_5},
    {0, C9_6,  C8_6,  C7_6},
    {0, C9_12, C8_12, C7_12},
    {0, C9_13, C8_13, C7_13},
    {0, C9_14, C8_14, C7_14},
    {0, C9_15, C8_15, C6_14}, // middle 2u switch
    {1, C9_4,  C8_4,  C7_4},
    {1, C9_5,  C8_5,  C7_5},
    {1, C9_6,  C8_6,  C7_6},
    {1, C9_12, C8_12, C7_12},
    {1, C9_13, C8_13, C7_13},
    {1, C9_14, C8_14, C7_14}
};

const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {

    /*{row | col << 4}
      |             {x=0..224, y=0..64}
      |              |                 modifier
      |              |                 | */
    {{0|(0<<4)},   {20.36*0, 21.33*0}, 1},
    {{0|(1<<4)},   {20.36*1, 21.33*0}, 0},
    {{0|(2<<4)},   {20.36*2, 21.33*0}, 0},
    {{0|(3<<4)},   {20.36*3, 21.33*0}, 0},
    {{0|(4<<4)},   {20.36*4, 21.33*0}, 0},
    {{0|(5<<4)},   {20.36*5, 21.33*0}, 0},
    {{0|(6<<4)},   {20.36*6, 21.33*0}, 0},
    {{0|(7<<4)},   {20.36*7, 21.33*0}, 0},
    {{0|(8<<4)},   {20.36*8, 21.33*0}, 0},
    {{0|(9<<4)},   {20.36*9, 21.33*0}, 0},
    {{0|(10<<4)},  {20.36*10,21.33*0}, 0},
    {{0|(11<<4)},  {20.36*11,21.33*0}, 1},

    {{1|(0<<4)},   {20.36*0, 21.33*1}, 1},
    {{1|(1<<4)},   {20.36*1, 21.33*1}, 0},
    {{1|(2<<4)},   {20.36*2, 21.33*1}, 0},
    {{1|(3<<4)},   {20.36*3, 21.33*1}, 0},
    {{1|(4<<4)},   {20.36*4, 21.33*1}, 0},
    {{1|(5<<4)},   {20.36*5, 21.33*1}, 0},
    {{1|(6<<4)},   {20.36*6, 21.33*1}, 0},
    {{1|(7<<4)},   {20.36*7, 21.33*1}, 0},
    {{1|(8<<4)},   {20.36*8, 21.33*1}, 0},
    {{1|(9<<4)},   {20.36*9, 21.33*1}, 0},
    {{1|(10<<4)},  {20.36*10,21.33*1}, 0},
    {{1|(11<<4)},  {20.36*11,21.33*1}, 1},

    {{2|(0<<4)},   {20.36*0, 21.33*2}, 1},
    {{2|(1<<4)},   {20.36*1, 21.33*2}, 0},
    {{2|(2<<4)},   {20.36*2, 21.33*2}, 0},
    {{2|(3<<4)},   {20.36*3, 21.33*2}, 0},
    {{2|(4<<4)},   {20.36*4, 21.33*2}, 0},
    {{2|(5<<4)},   {20.36*5, 21.33*2}, 0},
    {{2|(6<<4)},   {20.36*6, 21.33*2}, 0},
    {{2|(7<<4)},   {20.36*7, 21.33*2}, 0},
    {{2|(8<<4)},   {20.36*8, 21.33*2}, 0},
    {{2|(9<<4)},   {20.36*9, 21.33*2}, 0},
    {{2|(10<<4)},  {20.36*10,21.33*2}, 0},
    {{2|(11<<4)},  {20.36*11,21.33*2}, 1},

    {{3|(0<<4)},   {20.36*0, 21.33*3}, 1},
    {{3|(1<<4)},   {20.36*1, 21.33*3}, 1},
    {{3|(2<<4)},   {20.36*2, 21.33*3}, 1},
    {{3|(3<<4)},   {20.36*3, 21.33*3}, 1},
    {{3|(4<<4)},   {20.36*4, 21.33*3}, 1},
    {{3|(5<<4)},   {20.36*5, 21.33*3}, 0},
    {{3|(5<<4)},   {20.36*5.5,21.33*3}, 0},
    {{3|(6<<4)},   {20.36*6, 21.33*3}, 0},
    {{3|(7<<4)},   {20.36*7, 21.33*3}, 1},
    {{3|(8<<4)},   {20.36*8, 21.33*3}, 1},
    {{3|(9<<4)},   {20.36*9, 21.33*3}, 1},
    {{3|(10<<4)},  {20.36*10,21.33*3}, 1},
    {{3|(11<<4)},  {20.36*11,21.33*3}, 1}
};

void matrix_init_kb(void) {

    // Turn status LED on


@@ 27,13 147,22 @@ void matrix_init_kb(void) {
}

bool process_record_kb(uint16_t keycode, keyrecord_t *record)
{   
{
    return process_record_user(keycode, record);
}

uint16_t backlight_task_counter = 0;

void matrix_scan_kb(void)
{
    matrix_scan_user();
}
\ No newline at end of file
}

void suspend_power_down_kb(void)
{
    rgb_matrix_set_suspend_state(true);
}

void suspend_wakeup_init_kb(void)
{
    rgb_matrix_set_suspend_state(false);
}


M keyboards/planck/light/light.h => keyboards/planck/light/light.h +2 -2
@@ 1,5 1,4 @@
/* Copyright 2017 Jason Williams
 * Copyright 2017 Jack Humbert
/* Copyright 2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by


@@ 19,5 18,6 @@
#define LIGHT_H

#include "planck.h"
#include "rgb_matrix.h"

#endif
\ No newline at end of file

M keyboards/planck/light/rules.mk => keyboards/planck/light/rules.mk +1 -3
@@ 1,7 1,5 @@
MIDI_ENABLE = yes
AUDIO_ENABLE = yes           # Audio output on port C6
MOUSEKEY_ENABLE = no       # Mouse keys(+4700)
NKRO_ENABLE = yes            # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = yes      # Enable keyboard backlight functionality
RGB_MATRIX_ENABLE = yes

MCU = at90usb1286
\ No newline at end of file

M keyboards/planck/rules.mk => keyboards/planck/rules.mk +1 -1
@@ 48,7 48,7 @@ ifeq ($(strip $(KEYBOARD)), planck/rev5)
    BOOTLOADER = qmk-dfu
endif
ifeq ($(strip $(KEYBOARD)), planck/light)
    BOOTLOADER = qmk-dfu
    BOOTLOADER = atmel-dfu
endif

# Interrupt driven control endpoint task(+60)

A quantum/color.c => quantum/color.c +87 -0
@@ 0,0 1,87 @@
/* Copyright 2017 Jason Williams
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#include "color.h"
#include "led_tables.h"
#include "progmem.h"

RGB hsv_to_rgb( HSV hsv )
{
	RGB rgb;
	uint8_t region, p, q, t;
	uint16_t h, s, v, remainder;

	if ( hsv.s == 0 )
	{
		rgb.r = hsv.v;
		rgb.g = hsv.v;
		rgb.b = hsv.v;
		return rgb;
	}

	h = hsv.h;
	s = hsv.s;
	v = hsv.v;

	region = h / 43;
	remainder = (h - (region * 43)) * 6;

	p = (v * (255 - s)) >> 8;
	q = (v * (255 - ((s * remainder) >> 8))) >> 8;
	t = (v * (255 - ((s * (255 - remainder)) >> 8))) >> 8;

	switch ( region )
	{
		case 0:
			rgb.r = v;
			rgb.g = t;
			rgb.b = p;
			break;
		case 1:
			rgb.r = q;
			rgb.g = v;
			rgb.b = p;
			break;
		case 2:
			rgb.r = p;
			rgb.g = v;
			rgb.b = t;
			break;
		case 3:
			rgb.r = p;
			rgb.g = q;
			rgb.b = v;
			break;
		case 4:
			rgb.r = t;
			rgb.g = p;
			rgb.b = v;
			break;
		default:
			rgb.r = v;
			rgb.g = p;
			rgb.b = q;
			break;
	}

	rgb.r = pgm_read_byte( &CIE1931_CURVE[rgb.r] );
	rgb.g = pgm_read_byte( &CIE1931_CURVE[rgb.g] );
	rgb.b = pgm_read_byte( &CIE1931_CURVE[rgb.b] );

	return rgb;
}


A quantum/color.h => quantum/color.h +55 -0
@@ 0,0 1,55 @@
/* Copyright 2017 Jason Williams
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#ifndef COLOR_H
#define COLOR_H

#include <stdint.h>
#include <stdbool.h>


#if defined(__GNUC__)
#define PACKED __attribute__ ((__packed__))
#else
#define PACKED
#endif

#if defined(_MSC_VER)
#pragma pack( push, 1 )
#endif

typedef struct PACKED
{
	uint8_t r;
	uint8_t g;
	uint8_t b;
} RGB;

typedef struct PACKED
{
	uint8_t h;
	uint8_t s;
	uint8_t v;
} HSV;

#if defined(_MSC_VER)
#pragma pack( pop )
#endif

RGB hsv_to_rgb( HSV hsv );

#endif // COLOR_H

M quantum/quantum.c => quantum/quantum.c +21 -2
@@ 230,6 230,9 @@ bool process_record_quantum(keyrecord_t *record) {
      process_clicky(keycode, record) &&
  #endif //AUDIO_CLICKY
    process_record_kb(keycode, record) &&
  #if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYPRESSES)
    process_rgb_matrix(keycode, record) &&
  #endif
  #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
    process_midi(keycode, record) &&
  #endif


@@ 307,7 310,7 @@ bool process_record_quantum(keyrecord_t *record) {
    }
    return false;
  #endif
  #ifdef RGBLIGHT_ENABLE
  #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
  case RGB_TOG:
    if (record->event.pressed) {
      rgblight_toggle();


@@ 835,9 838,18 @@ void matrix_init_quantum() {
  #ifdef AUDIO_ENABLE
    audio_init();
  #endif
  #ifdef RGB_MATRIX_ENABLE
    rgb_matrix_init_drivers();
  #endif
  matrix_init_kb();
}

uint8_t rgb_matrix_task_counter = 0;

#ifndef RGB_MATRIX_SKIP_FRAMES
  #define RGB_MATRIX_SKIP_FRAMES 1
#endif

void matrix_scan_quantum() {
  #if defined(AUDIO_ENABLE)
    matrix_scan_music();


@@ 855,9 867,16 @@ void matrix_scan_quantum() {
    backlight_task();
  #endif

  #ifdef RGB_MATRIX_ENABLE
    rgb_matrix_task();
    if (rgb_matrix_task_counter == 0) {
      rgb_matrix_update_pwm_buffers();
    }
    rgb_matrix_task_counter = ((rgb_matrix_task_counter + 1) % (RGB_MATRIX_SKIP_FRAMES + 1));
  #endif

  matrix_scan_kb();
}

#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_PIN)

static const uint8_t backlight_pin = BACKLIGHT_PIN;

M quantum/quantum.h => quantum/quantum.h +6 -0
@@ 27,9 27,15 @@
#ifdef BACKLIGHT_ENABLE
    #include "backlight.h"
#endif
#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE) 
	#include "rgb.h"
#endif
#ifdef RGBLIGHT_ENABLE
  #include "rgblight.h"
#endif
#ifdef RGB_MATRIX_ENABLE
	#include "rgb_matrix.h"
#endif
#include "action_layer.h"
#include "eeconfig.h"
#include <stddef.h>

A quantum/rgb.h => quantum/rgb.h +47 -0
@@ 0,0 1,47 @@
/* Copyright 2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef RGB_H
#define RGB_H

__attribute__((weak))
void rgblight_toggle(void) {};

__attribute__((weak))
void rgblight_step(void) {};

__attribute__((weak))
void rgblight_step_reverse(void) {};

__attribute__((weak))
void rgblight_increase_hue(void) {};

__attribute__((weak))
void rgblight_decrease_hue(void) {};

__attribute__((weak))
void rgblight_increase_sat(void) {};

__attribute__((weak))
void rgblight_decrease_sat(void) {};

__attribute__((weak))
void rgblight_increase_val(void) {};

__attribute__((weak))
void rgblight_decrease_val(void) {};

#endif
\ No newline at end of file

A quantum/rgb_matrix.c => quantum/rgb_matrix.c +873 -0
@@ 0,0 1,873 @@
/* Copyright 2017 Jason Williams
 * Copyright 2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#include "rgb_matrix.h"
#include <avr/io.h>
#include "TWIlib.h"
#include <util/delay.h>
#include <avr/interrupt.h>
#include "progmem.h"
#include "config.h"
#include "eeprom.h"
#include "lufa.h"
#include <math.h>

rgb_config_t rgb_matrix_config;

#ifndef RGB_DISABLE_AFTER_TIMEOUT
    #define RGB_DISABLE_AFTER_TIMEOUT 0
#endif

#ifndef RGB_DISABLE_WHEN_USB_SUSPENDED
    #define RGB_DISABLE_WHEN_USB_SUSPENDED false
#endif

#ifndef EECONFIG_RGB_MATRIX
    #define EECONFIG_RGB_MATRIX EECONFIG_RGBLIGHT
#endif

bool g_suspend_state = false;

// Global tick at 20 Hz
uint32_t g_tick = 0;

// Ticks since this key was last hit.
uint8_t g_key_hit[DRIVER_LED_TOTAL];

// Ticks since any key was last hit.
uint32_t g_any_key_hit = 0;

#ifndef PI
#define PI 3.14159265
#endif

uint32_t eeconfig_read_rgb_matrix(void) {
  return eeprom_read_dword(EECONFIG_RGB_MATRIX);
}
void eeconfig_update_rgb_matrix(uint32_t val) {
  eeprom_update_dword(EECONFIG_RGB_MATRIX, val);
}
void eeconfig_update_rgb_matrix_default(void) {
  dprintf("eeconfig_update_rgb_matrix_default\n");
  rgb_matrix_config.enable = 1;
  rgb_matrix_config.mode = RGB_MATRIX_CYCLE_LEFT_RIGHT;
  rgb_matrix_config.hue = 0;
  rgb_matrix_config.sat = 255;
  rgb_matrix_config.val = 255;
  eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}
void eeconfig_debug_rgb_matrix(void) {
  dprintf("rgb_matrix_config eprom\n");
  dprintf("rgb_matrix_config.enable = %d\n", rgb_matrix_config.enable);
  dprintf("rgb_matrix_config.mode = %d\n", rgb_matrix_config.mode);
  dprintf("rgb_matrix_config.hue = %d\n", rgb_matrix_config.hue);
  dprintf("rgb_matrix_config.sat = %d\n", rgb_matrix_config.sat);
  dprintf("rgb_matrix_config.val = %d\n", rgb_matrix_config.val);
}

// Last led hit
#define LED_HITS_TO_REMEMBER 8
uint8_t g_last_led_hit[LED_HITS_TO_REMEMBER] = {255};
uint8_t g_last_led_count = 0;

void map_row_column_to_led( uint8_t row, uint8_t column, uint8_t *led_i, uint8_t *led_count) {
    rgb_led led;
    *led_count = 0;

    for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
        // map_index_to_led(i, &led);
        led = g_rgb_leds[i];
        if (row == led.matrix_co.row && column == led.matrix_co.col) {
            led_i[*led_count] = i;
            (*led_count)++;
        }
    }
}


void rgb_matrix_update_pwm_buffers(void) {
    IS31FL3731_update_pwm_buffers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
    IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );
}

void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) {
    IS31FL3731_set_color( index, red, green, blue );
}

void rgb_matrix_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) {
    IS31FL3731_set_color_all( red, green, blue );
}


bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record) {
    if ( record->event.pressed ) {
        uint8_t led[8], led_count;
        map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
        if (led_count > 0) {
            for (uint8_t i = LED_HITS_TO_REMEMBER; i > 1; i--) {
                g_last_led_hit[i - 1] = g_last_led_hit[i - 2];
            }
            g_last_led_hit[0] = led[0];
            g_last_led_count = MIN(LED_HITS_TO_REMEMBER, g_last_led_count + 1);
        }
        for(uint8_t i = 0; i < led_count; i++)
            g_key_hit[led[i]] = 0;
        g_any_key_hit = 0;
    } else {
        #ifdef RGB_MATRIX_KEYRELEASES
        uint8_t led[8], led_count;
        map_row_column_to_led(record->event.key.row, record->event.key.col, led, &led_count);
        for(uint8_t i = 0; i < led_count; i++)
            g_key_hit[led[i]] = 255;

        g_any_key_hit = 255;
        #endif
    }
    return true;
}

void rgb_matrix_set_suspend_state(bool state) {
    g_suspend_state = state;
}

void rgb_matrix_test(void) {
    // Mask out bits 4 and 5
    // This 2-bit value will stay the same for 16 ticks.
    switch ( (g_tick & 0x30) >> 4 )
    {
        case 0:
        {
            rgb_matrix_set_color_all( 20, 0, 0 );
            break;
        }
        case 1:
        {
            rgb_matrix_set_color_all( 0, 20, 0 );
            break;
        }
        case 2:
        {
            rgb_matrix_set_color_all( 0, 0, 20 );
            break;
        }
        case 3:
        {
            rgb_matrix_set_color_all( 20, 20, 20 );
            break;
        }
    }
}

// This tests the LEDs
// Note that it will change the LED control registers
// in the LED drivers, and leave them in an invalid
// state for other backlight effects.
// ONLY USE THIS FOR TESTING LEDS!
void rgb_matrix_single_LED_test(void) {
    static uint8_t color = 0; // 0,1,2 for R,G,B
    static uint8_t row = 0;
    static uint8_t column = 0;

    static uint8_t tick = 0;
    tick++;

    if ( tick > 2 )
    {
        tick = 0;
        column++;
    }
    if ( column > MATRIX_COLS )
    {
        column = 0;
        row++;
    }
    if ( row > MATRIX_ROWS )
    {
        row = 0;
        color++;
    }
    if ( color > 2 )
    {
        color = 0;
    }

    uint8_t led[8], led_count;
    map_row_column_to_led(row,column,led,&led_count);
    for(uint8_t i = 0; i < led_count; i++) {
        rgb_matrix_set_color_all( 40, 40, 40 );
        rgb_matrix_test_led( led[i], color==0, color==1, color==2 );
    }
}

// All LEDs off
void rgb_matrix_all_off(void) { 
    rgb_matrix_set_color_all( 0, 0, 0 );
}

// Solid color
void rgb_matrix_solid_color(void) {
    HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
    RGB rgb = hsv_to_rgb( hsv );
    rgb_matrix_set_color_all( rgb.r, rgb.g, rgb.b );
}

void rgb_matrix_solid_reactive(void) {
	// Relies on hue being 8-bit and wrapping
	for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
	{
		uint16_t offset2 = g_key_hit[i]<<2;
		offset2 = (offset2<=130) ? (130-offset2) : 0;

		HSV hsv = { .h = rgb_matrix_config.hue+offset2, .s = 255, .v = rgb_matrix_config.val };
		RGB rgb = hsv_to_rgb( hsv );
		rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
	}
}

// alphas = color1, mods = color2
void rgb_matrix_alphas_mods(void) {
 
    RGB rgb1 = hsv_to_rgb( (HSV){ .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );
    RGB rgb2 = hsv_to_rgb( (HSV){ .h = (rgb_matrix_config.hue + 180) % 360, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val } );

    rgb_led led;
    for (int i = 0; i < DRIVER_LED_TOTAL; i++) {
        led = g_rgb_leds[i];
        if ( led.matrix_co.raw < 0xFF ) {
            if ( led.modifier )
            {
                rgb_matrix_set_color( i, rgb2.r, rgb2.g, rgb2.b );
            }
            else
            {
                rgb_matrix_set_color( i, rgb1.r, rgb1.g, rgb1.b );
            }
        }
    }
}

void rgb_matrix_gradient_up_down(void) {
    int16_t h1 = rgb_matrix_config.hue;
    int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
    int16_t deltaH = h2 - h1;

    // Take the shortest path between hues
    if ( deltaH > 127 )
    {
        deltaH -= 256;
    }
    else if ( deltaH < -127 )
    {
        deltaH += 256;
    }
    // Divide delta by 4, this gives the delta per row
    deltaH /= 4;

    int16_t s1 = rgb_matrix_config.sat;
    int16_t s2 = rgb_matrix_config.hue;
    int16_t deltaS = ( s2 - s1 ) / 4;

    HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
    RGB rgb;
    Point point;
    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // map_led_to_point( i, &point );
        point = g_rgb_leds[i].point;
        // The y range will be 0..64, map this to 0..4
        uint8_t y = (point.y>>4);
        // Relies on hue being 8-bit and wrapping
        hsv.h = rgb_matrix_config.hue + ( deltaH * y );
        hsv.s = rgb_matrix_config.sat + ( deltaS * y );
        rgb = hsv_to_rgb( hsv );
        rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
    }
}

void rgb_matrix_raindrops(bool initialize) {
    int16_t h1 = rgb_matrix_config.hue;
    int16_t h2 = (rgb_matrix_config.hue + 180) % 360;
    int16_t deltaH = h2 - h1;
    deltaH /= 4;

    // Take the shortest path between hues
    if ( deltaH > 127 )
    {
        deltaH -= 256;
    }
    else if ( deltaH < -127 )
    {
        deltaH += 256;
    }

    int16_t s1 = rgb_matrix_config.sat;
    int16_t s2 = rgb_matrix_config.sat;
    int16_t deltaS = ( s2 - s1 ) / 4;

    HSV hsv;
    RGB rgb;

    // Change one LED every tick
    uint8_t led_to_change = ( g_tick & 0x000 ) == 0 ? rand() % DRIVER_LED_TOTAL : 255;

    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // If initialize, all get set to random colors
        // If not, all but one will stay the same as before.
        if ( initialize || i == led_to_change )
        {
            hsv.h = h1 + ( deltaH * ( rand() & 0x03 ) );
            hsv.s = s1 + ( deltaS * ( rand() & 0x03 ) );
            // Override brightness with global brightness control
            hsv.v = rgb_matrix_config.val;

            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    }
}

void rgb_matrix_cycle_all(void) {
    uint8_t offset = g_tick & 0xFF;

    rgb_led led;

    // Relies on hue being 8-bit and wrapping
    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // map_index_to_led(i, &led);
        led = g_rgb_leds[i];
        if (led.matrix_co.raw < 0xFF) {
            uint16_t offset2 = g_key_hit[i]<<2;
            offset2 = (offset2<=63) ? (63-offset2) : 0;

            HSV hsv = { .h = offset+offset2, .s = 255, .v = rgb_matrix_config.val };
            RGB rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    }
}

void rgb_matrix_cycle_left_right(void) {
    uint8_t offset = g_tick & 0xFF;
    HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
    RGB rgb;
    Point point;
    rgb_led led;
    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // map_index_to_led(i, &led);
        led = g_rgb_leds[i];
        if (led.matrix_co.raw < 0xFF) {
            uint16_t offset2 = g_key_hit[i]<<2;
            offset2 = (offset2<=63) ? (63-offset2) : 0;

            // map_led_to_point( i, &point );
            point = g_rgb_leds[i].point;
            // Relies on hue being 8-bit and wrapping
            hsv.h = point.x + offset + offset2;
            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    }
}

void rgb_matrix_cycle_up_down(void) {
    uint8_t offset = g_tick & 0xFF;
    HSV hsv = { .h = 0, .s = 255, .v = rgb_matrix_config.val };
    RGB rgb;
    Point point;
    rgb_led led;
    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // map_index_to_led(i, &led);
        led = g_rgb_leds[i];
        if (led.matrix_co.raw < 0xFF) {
            uint16_t offset2 = g_key_hit[i]<<2;
            offset2 = (offset2<=63) ? (63-offset2) : 0;

            // map_led_to_point( i, &point );
            point = g_rgb_leds[i].point;
            // Relies on hue being 8-bit and wrapping
            hsv.h = point.y + offset + offset2;
            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    }
}


void rgb_matrix_dual_beacon(void) {
    HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
    RGB rgb;
    rgb_led led;
    for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
        led = g_rgb_leds[i];
        hsv.h = ((led.point.y - 32.0)* cos(g_tick * PI / 128) / 32 + (led.point.x - 112.0) * sin(g_tick * PI / 128) / (112)) * (180) + rgb_matrix_config.hue;
        rgb = hsv_to_rgb( hsv );
        rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
    }
}

void rgb_matrix_rainbow_beacon(void) {
    HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
    RGB rgb;
    rgb_led led;
    for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
        led = g_rgb_leds[i];
        hsv.h = 1.5 * (led.point.y - 32.0)* cos(g_tick * PI / 128) + 1.5 * (led.point.x - 112.0) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
        rgb = hsv_to_rgb( hsv );
        rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
    }
}

void rgb_matrix_rainbow_pinwheels(void) {
    HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
    RGB rgb;
    rgb_led led;
    for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
        led = g_rgb_leds[i];
        hsv.h = 2 * (led.point.y - 32.0)* cos(g_tick * PI / 128) + 2 * (66 - abs(led.point.x - 112.0)) * sin(g_tick * PI / 128) + rgb_matrix_config.hue;
        rgb = hsv_to_rgb( hsv );
        rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
    }
}

void rgb_matrix_rainbow_moving_chevron(void) {
    HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
    RGB rgb;
    rgb_led led;
    for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
        led = g_rgb_leds[i];
        // uint8_t r = g_tick;
        uint8_t r = 32;
        hsv.h = 1.5 * abs(led.point.y - 32.0)* sin(r * PI / 128) + 1.5 * (led.point.x - (g_tick / 256.0 * 224)) * cos(r * PI / 128) + rgb_matrix_config.hue;
        rgb = hsv_to_rgb( hsv );
        rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
    }
}


void rgb_matrix_jellybean_raindrops( bool initialize ) {
    HSV hsv;
    RGB rgb;

    // Change one LED every tick
    uint8_t led_to_change = ( g_tick & 0x000 ) == 0 ? rand() % DRIVER_LED_TOTAL : 255;

    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        // If initialize, all get set to random colors
        // If not, all but one will stay the same as before.
        if ( initialize || i == led_to_change )
        {
            hsv.h = rand() & 0xFF;
            hsv.s = rand() & 0xFF;
            // Override brightness with global brightness control
            hsv.v = rgb_matrix_config.val;

            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    }
}

void rgb_matrix_multisplash(void) {
    // if (g_any_key_hit < 0xFF) {
        HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
        RGB rgb;
        rgb_led led;
        for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
            led = g_rgb_leds[i];
            uint16_t c = 0, d = 0;
            rgb_led last_led;
            // if (g_last_led_count) {
                for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
                    last_led = g_rgb_leds[g_last_led_hit[last_i]];
                    uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
                    uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
                    c += MIN(MAX(effect, 0), 255);
                    d += 255 - MIN(MAX(effect, 0), 255);
                }
            // } else {
            //     d = 255;
            // }
            hsv.h = (rgb_matrix_config.hue + c) % 256;
            hsv.v = MAX(MIN(d, 255), 0);
            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    // } else {
        // rgb_matrix_set_color_all( 0, 0, 0 );
    // }
}


void rgb_matrix_splash(void) {
    g_last_led_count = MIN(g_last_led_count, 1);
    rgb_matrix_multisplash();
}


void rgb_matrix_solid_multisplash(void) {
    // if (g_any_key_hit < 0xFF) {
        HSV hsv = { .h = rgb_matrix_config.hue, .s = rgb_matrix_config.sat, .v = rgb_matrix_config.val };
        RGB rgb;
        rgb_led led;
        for (uint8_t i = 0; i < DRIVER_LED_TOTAL; i++) {
            led = g_rgb_leds[i];
            uint16_t d = 0;
            rgb_led last_led;
            // if (g_last_led_count) {
                for (uint8_t last_i = 0; last_i < g_last_led_count; last_i++) {
                    last_led = g_rgb_leds[g_last_led_hit[last_i]];
                    uint16_t dist = (uint16_t)sqrt(pow(led.point.x - last_led.point.x, 2) + pow(led.point.y - last_led.point.y, 2));
                    uint16_t effect = (g_key_hit[g_last_led_hit[last_i]] << 2) - dist;
                    d += 255 - MIN(MAX(effect, 0), 255);
                }
            // } else {
            //     d = 255;
            // }
            hsv.v = MAX(MIN(d, 255), 0);
            rgb = hsv_to_rgb( hsv );
            rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
        }
    // } else {
        // rgb_matrix_set_color_all( 0, 0, 0 );
    // }
}


void rgb_matrix_solid_splash(void) {
    g_last_led_count = MIN(g_last_led_count, 1);
    rgb_matrix_solid_multisplash();
}


// Needs eeprom access that we don't have setup currently

void rgb_matrix_custom(void) {
//     HSV hsv;
//     RGB rgb;
//     for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
//     {
//         backlight_get_key_color(i, &hsv);
//         // Override brightness with global brightness control
//         hsv.v = rgb_matrix_config.val;
//         rgb = hsv_to_rgb( hsv );
//         rgb_matrix_set_color( i, rgb.r, rgb.g, rgb.b );
//     }
}

void rgb_matrix_task(void) {
	if (!rgb_matrix_config.enable) {
    	rgb_matrix_all_off();
    	return;
    }
    // delay 1 second before driving LEDs or doing anything else
    static uint8_t startup_tick = 0;
    if ( startup_tick < 20 ) {
        startup_tick++;
        return;
    }

    g_tick++;

    if ( g_any_key_hit < 0xFFFFFFFF ) {
        g_any_key_hit++;
    }

    for ( int led = 0; led < DRIVER_LED_TOTAL; led++ ) {
        if ( g_key_hit[led] < 255 ) {
            if (g_key_hit[led] == 254)
                g_last_led_count = MAX(g_last_led_count - 1, 0);
            g_key_hit[led]++;
        }
    }

    // Factory default magic value
    if ( rgb_matrix_config.mode == 255 ) {
        rgb_matrix_test();
        return;
    }

    // Ideally we would also stop sending zeros to the LED driver PWM buffers
    // while suspended and just do a software shutdown. This is a cheap hack for now.
    bool suspend_backlight = ((g_suspend_state && RGB_DISABLE_WHEN_USB_SUSPENDED) ||
            (RGB_DISABLE_AFTER_TIMEOUT > 0 && g_any_key_hit > RGB_DISABLE_AFTER_TIMEOUT * 60 * 20));
    uint8_t effect = suspend_backlight ? 0 : rgb_matrix_config.mode;

    // Keep track of the effect used last time,
    // detect change in effect, so each effect can
    // have an optional initialization.
    static uint8_t effect_last = 255;
    bool initialize = effect != effect_last;
    effect_last = effect;

    // this gets ticked at 20 Hz.
    // each effect can opt to do calculations
    // and/or request PWM buffer updates.
    switch ( effect ) {
        case RGB_MATRIX_SOLID_COLOR:
            rgb_matrix_solid_color();
            break;
        case RGB_MATRIX_SOLID_REACTIVE:
            rgb_matrix_solid_reactive();
            break;
        case RGB_MATRIX_ALPHAS_MODS:
            rgb_matrix_alphas_mods();
            break;
        case RGB_MATRIX_DUAL_BEACON:
            rgb_matrix_dual_beacon();
            break;
        case RGB_MATRIX_GRADIENT_UP_DOWN:
            rgb_matrix_gradient_up_down();
            break;
        case RGB_MATRIX_RAINDROPS:
            rgb_matrix_raindrops( initialize );
            break;
        case RGB_MATRIX_CYCLE_ALL:
            rgb_matrix_cycle_all();
            break;
        case RGB_MATRIX_CYCLE_LEFT_RIGHT:
            rgb_matrix_cycle_left_right();
            break;
        case RGB_MATRIX_CYCLE_UP_DOWN:
            rgb_matrix_cycle_up_down();
            break;
        case RGB_MATRIX_RAINBOW_BEACON:
            rgb_matrix_rainbow_beacon();
            break;
        case RGB_MATRIX_RAINBOW_PINWHEELS:
            rgb_matrix_rainbow_pinwheels();
            break;
        case RGB_MATRIX_RAINBOW_MOVING_CHEVRON:
            rgb_matrix_rainbow_moving_chevron();
            break;
        case RGB_MATRIX_JELLYBEAN_RAINDROPS:
            rgb_matrix_jellybean_raindrops( initialize );
            break;
        #ifdef RGB_MATRIX_KEYPRESSES
            case RGB_MATRIX_SPLASH:
                rgb_matrix_splash();
                break;
            case RGB_MATRIX_MULTISPLASH:
                rgb_matrix_multisplash();
                break;
            case RGB_MATRIX_SOLID_SPLASH:
                rgb_matrix_solid_splash();
                break;
            case RGB_MATRIX_SOLID_MULTISPLASH:
                rgb_matrix_solid_multisplash();
                break;
        #endif
        default:
            rgb_matrix_custom();
            break;
    }

    if ( ! suspend_backlight ) {
        rgb_matrix_indicators();
    }

}

void rgb_matrix_indicators(void) {
    rgb_matrix_indicators_kb();
    rgb_matrix_indicators_user();
}

__attribute__((weak))
void rgb_matrix_indicators_kb(void) {}

__attribute__((weak))
void rgb_matrix_indicators_user(void) {}


// void rgb_matrix_set_indicator_index( uint8_t *index, uint8_t row, uint8_t column )
// {
//  if ( row >= MATRIX_ROWS )
//  {
//      // Special value, 255=none, 254=all
//      *index = row;
//  }
//  else
//  {
//      // This needs updated to something like
//      // uint8_t led[8], led_count;
//      // map_row_column_to_led(row,column,led,&led_count);
//      // for(uint8_t i = 0; i < led_count; i++)
//      map_row_column_to_led( row, column, index );
//  }
// }

void rgb_matrix_init_drivers(void) {
    //sei();

    // Initialize TWI
    TWIInit();
    IS31FL3731_init( DRIVER_ADDR_1 );
    IS31FL3731_init( DRIVER_ADDR_2 );

    for ( int index = 0; index < DRIVER_LED_TOTAL; index++ ) {
        bool enabled = true;
        // This only caches it for later
        IS31FL3731_set_led_control_register( index, enabled, enabled, enabled );
    }
    // This actually updates the LED drivers
    IS31FL3731_update_led_control_registers( DRIVER_ADDR_1, DRIVER_ADDR_2 );

    // TODO: put the 1 second startup delay here?

    // clear the key hits
    for ( int led=0; led<DRIVER_LED_TOTAL; led++ ) {
        g_key_hit[led] = 255;
    }


    if (!eeconfig_is_enabled()) {
        dprintf("rgb_matrix_init_drivers eeconfig is not enabled.\n");
        eeconfig_init();
        eeconfig_update_rgb_matrix_default();
    }
    rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
    if (!rgb_matrix_config.mode) {
        dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n");
        eeconfig_update_rgb_matrix_default();
        rgb_matrix_config.raw = eeconfig_read_rgb_matrix();
    }
    eeconfig_debug_rgb_matrix(); // display current eeprom values
}

// Deals with the messy details of incrementing an integer
uint8_t increment( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
    int16_t new_value = value;
    new_value += step;
    return MIN( MAX( new_value, min ), max );
}

uint8_t decrement( uint8_t value, uint8_t step, uint8_t min, uint8_t max ) {
    int16_t new_value = value;
    new_value -= step;
    return MIN( MAX( new_value, min ), max );
}

// void *backlight_get_custom_key_color_eeprom_address( uint8_t led )
// {
//     // 3 bytes per color
//     return EECONFIG_RGB_MATRIX + ( led * 3 );
// }

// void backlight_get_key_color( uint8_t led, HSV *hsv )
// {
//     void *address = backlight_get_custom_key_color_eeprom_address( led );
//     hsv->h = eeprom_read_byte(address);
//     hsv->s = eeprom_read_byte(address+1);
//     hsv->v = eeprom_read_byte(address+2);
// }

// void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv )
// {
//     uint8_t led[8], led_count;
//     map_row_column_to_led(row,column,led,&led_count);
//     for(uint8_t i = 0; i < led_count; i++) {
//         if ( led[i] < DRIVER_LED_TOTAL )
//         {
//             void *address = backlight_get_custom_key_color_eeprom_address(led[i]);
//             eeprom_update_byte(address, hsv.h);
//             eeprom_update_byte(address+1, hsv.s);
//             eeprom_update_byte(address+2, hsv.v);
//         }
//     }
// }

void rgb_matrix_test_led( uint8_t index, bool red, bool green, bool blue ) {
    for ( int i=0; i<DRIVER_LED_TOTAL; i++ )
    {
        if ( i == index )
        {
            IS31FL3731_set_led_control_register( i, red, green, blue );
        }
        else
        {
            IS31FL3731_set_led_control_register( i, false, false, false );
        }
    }
}

uint32_t rgb_matrix_get_tick(void) {
    return g_tick;
}

void rgblight_toggle(void) {
	rgb_matrix_config.enable ^= 1;
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_step(void) {
    rgb_matrix_config.mode++;
    if (rgb_matrix_config.mode >= RGB_MATRIX_EFFECT_MAX)
        rgb_matrix_config.mode = 1;
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_step_reverse(void) {
    rgb_matrix_config.mode--;
    if (rgb_matrix_config.mode <= 1)
        rgb_matrix_config.mode = (RGB_MATRIX_EFFECT_MAX - 1);
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_increase_hue(void) {
    rgb_matrix_config.hue = increment( rgb_matrix_config.hue, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_decrease_hue(void) {
    rgb_matrix_config.hue = decrement( rgb_matrix_config.hue, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_increase_sat(void) {
    rgb_matrix_config.sat = increment( rgb_matrix_config.sat, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_decrease_sat(void) {
    rgb_matrix_config.sat = decrement( rgb_matrix_config.sat, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_increase_val(void) {
    rgb_matrix_config.val = increment( rgb_matrix_config.val, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_decrease_val(void) {
    rgb_matrix_config.val = decrement( rgb_matrix_config.val, 8, 0, 255 );
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

void rgblight_mode(uint8_t mode) {
    rgb_matrix_config.mode = mode;
    eeconfig_update_rgb_matrix(rgb_matrix_config.raw);
}

uint32_t rgblight_get_mode(void) {
    return rgb_matrix_config.mode;
}

A quantum/rgb_matrix.h => quantum/rgb_matrix.h +135 -0
@@ 0,0 1,135 @@
/* Copyright 2017 Jason Williams
 * Copyright 2017 Jack Humbert
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef RGB_MATRIX_H
#define RGB_MATRIX_H

#include <stdint.h>
#include <stdbool.h>
#include "color.h"
#include "is31fl3731.h"
#include "quantum.h"

typedef struct Point {
	uint8_t x;
	uint8_t y;
} __attribute__((packed)) Point;

typedef struct rgb_led {
	union {
		uint8_t raw;
		struct {
			uint8_t row:4; // 16 max
			uint8_t col:4; // 16 max
		};
	} matrix_co;
	Point point;
	uint8_t modifier:1;
} __attribute__((packed)) rgb_led;


extern const rgb_led g_rgb_leds[DRIVER_LED_TOTAL];

typedef struct
{
	HSV color;
	uint8_t index;
} rgb_indicator;

typedef union {
  uint32_t raw;
  struct {
    bool     enable  :1;
    uint8_t  mode    :6;
    uint16_t hue     :9;
    uint8_t  sat     :8;
    uint8_t  val     :8;
  };
} rgb_config_t;

enum rgb_matrix_effects {
	RGB_MATRIX_SOLID_COLOR = 1,
    RGB_MATRIX_SOLID_REACTIVE,
    RGB_MATRIX_ALPHAS_MODS,
    RGB_MATRIX_DUAL_BEACON,
    RGB_MATRIX_GRADIENT_UP_DOWN,
    RGB_MATRIX_RAINDROPS,
    RGB_MATRIX_CYCLE_ALL,
    RGB_MATRIX_CYCLE_LEFT_RIGHT,
    RGB_MATRIX_CYCLE_UP_DOWN,
    RGB_MATRIX_RAINBOW_BEACON,
    RGB_MATRIX_RAINBOW_PINWHEELS,
    RGB_MATRIX_RAINBOW_MOVING_CHEVRON,
    RGB_MATRIX_JELLYBEAN_RAINDROPS,
#ifdef RGB_MATRIX_KEYPRESSES
    RGB_MATRIX_SPLASH,
    RGB_MATRIX_MULTISPLASH,
    RGB_MATRIX_SOLID_SPLASH,
    RGB_MATRIX_SOLID_MULTISPLASH,
#endif
    RGB_MATRIX_EFFECT_MAX
};

void rgb_matrix_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );

// This runs after another backlight effect and replaces
// colors already set
void rgb_matrix_indicators(void);
void rgb_matrix_indicators_kb(void);
void rgb_matrix_indicators_user(void);

void rgb_matrix_single_LED_test(void);

void rgb_matrix_init_drivers(void);

void rgb_matrix_set_suspend_state(bool state);
void rgb_matrix_set_indicator_state(uint8_t state);


void rgb_matrix_task(void);

// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void rgb_matrix_update_pwm_buffers(void);

bool process_rgb_matrix(uint16_t keycode, keyrecord_t *record);

void rgb_matrix_increase(void);
void rgb_matrix_decrease(void);

// void *backlight_get_key_color_eeprom_address(uint8_t led);
// void backlight_get_key_color( uint8_t led, HSV *hsv );
// void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv );

void rgb_matrix_test_led( uint8_t index, bool red, bool green, bool blue );
uint32_t rgb_matrix_get_tick(void);

void rgblight_toggle(void);
void rgblight_step(void);
void rgblight_step_reverse(void);
void rgblight_increase_hue(void);
void rgblight_decrease_hue(void);
void rgblight_increase_sat(void);
void rgblight_decrease_sat(void);
void rgblight_increase_val(void);
void rgblight_decrease_val(void);
void rgblight_mode(uint8_t mode);
uint32_t rgblight_get_mode(void);

#endif