~ruther/qmk_firmware

050c21d35f01d4d59d2e1e89eaded2616257f148 — Erin Call 7 years ago 642bf00
Bring dactyl/matrix.c in line with quantum/matrix.c (#2613)

* Use the new debounce algorithm in dactyl/matrix.c [#2065]

This incorporates the fixed/optimized debounce code added to
quantum/matrix.c in:

* 508eddf8ba8548d3f71e1c09a404839beb49f45c
* 4c6960835c0a6e29670dabdc27117d7d3c7f99f5
* 32f88c07173b795c6981c779057dceba00aeb1cb
* f4030289744fc6dc82dd85c955070c0845813cc5
* a06115df19a74d39b08758472b221e630c3680d3

* Fix the row/column swap in dactyl [#2065]

With a column-driven keyboard, reading from the mcp23081 returns a
column-state, which takes some extra work to translate into the
row-state used in the actual matrix. The ergodox_ez code sidestepped
that problem by calling rows "columns" and columns "rows." With this
change, the dactyl now calls rows "rows" and columns "columns."

* Cleanup: variable names, documentation [#2065]

* Support MATRIX_MASKED in dactyl/matrix.c [#2065]

* Only unselect one col in unselect_col [#2065]

Bonus: saves one i2c transaction per matrix_scan!

* Implement COL2ROW in dactyl/matrix.c [#2065]

* Fix a typo in dactyl/matrix.c

This entirely doesn't matter. The PORT values are set during
init_keyboard and never change. They're repeatedly set to the same
thing. These PORT lines shouldn't even exist, but since they do, they
should at least look right.

* Implement COL_PINS/ROW_PINS for dactyl [#2065]

* Rename "mcp23018" to "expander" [#2065]

I honestly don't know whether/how well this code works with other I/O
expanders, but at least in theory, it should be generic enough to work
with others. Given that, the variable names shouldn't refer to a
specific model of expander.

* Remove matrix_power_up from dactyl/matrix.c [#2065]

It's commented out in quantum/matrix.c, and the dactyl has no power
up/down behavior beyond being unplugged (which goes to matrix_init), so
there's no sense keeping it around.

* Only initialize expander_input_mask once [#2065]

...and rename input_mask to expander_input_mask, since now that it isn't
scoped to init_expander it isn't clear that it's only for the expander.
M keyboards/handwired/dactyl/config.h => keyboards/handwired/dactyl/config.h +9 -6
@@ 30,12 30,15 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#define PRODUCT         Dactyl
#define DESCRIPTION     An ortholinear, split, 3D-curved keyboard with thumb clusters.

/* key matrix size
 * At this time, "row" in the dactyl's code actually means "column" on the
 * physical keyboard. It's confusing. I'm sorry. Blame Jack Humbert :P
 */
#define MATRIX_ROWS 12
#define MATRIX_COLS 6
#define DIODE_DIRECTION ROW2COL
#define MATRIX_ROWS 6
#define MATRIX_COLS 12
#define COL_EXPANDED { true, true, true, true, true, true, false, false, false, false, false, false}
#define MATRIX_ONBOARD_ROW_PINS { F0, F1, F4, F5, F6, F7 }
#define MATRIX_ONBOARD_COL_PINS { 0, 0, 0, 0, 0, 0, B1, B2, B3, D2, D3, C6 }
#define EXPANDER_COL_REGISTER 0
#define MATRIX_EXPANDER_COL_PINS {0, 1, 2, 3, 4, 5}
#define MATRIX_EXPANDER_ROW_PINS {0, 1, 2, 3, 4, 5}

#define MOUSEKEY_INTERVAL     20
#define MOUSEKEY_DELAY        0

M keyboards/handwired/dactyl/dactyl.c => keyboards/handwired/dactyl/dactyl.c +6 -71
@@ 1,80 1,15 @@
#include "dactyl.h"
#include "i2cmaster.h"


bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20;

void matrix_init_kb(void) {
    DDRB  &= ~(1<<4);  // set B(4) as input
    PORTB &= ~(1<<4);  // set B(4) internal pull-up disabled

    // unused pins - C7, D4, D5, D7, E6
    // set as input with internal pull-up enabled
    DDRC  &= ~(1<<7);
    DDRD  &= ~(1<<5 | 1<<4);
    DDRE  &= ~(1<<6);
    PORTC |=  (1<<7);
    PORTD |=  (1<<5 | 1<<4);
    PORTE |=  (1<<6);

    matrix_init_user();
}

uint8_t init_mcp23018(void) {
    mcp23018_status = 0x20;

    // I2C subsystem

    if (i2c_initialized == 0) {
        i2c_init();  // on pins D(1,0)
        i2c_initialized = true;
        _delay_ms(1000);
    }

    // set pin direction
    // - unused  : input  : 1
    // - input   : input  : 1
    // - driving : output : 0
    mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(IODIRA);            if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111);        if (mcp23018_status) goto out;
    i2c_stop();

    // set pull-up
    // - unused  : on  : 1
    // - input   : on  : 1
    // - driving : off : 0
    mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(GPPUA);             if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00000000);        if (mcp23018_status) goto out;
    mcp23018_status = i2c_write(0b00111111);        if (mcp23018_status) goto out;

out:
    i2c_stop();

    return mcp23018_status;
}

#ifdef SWAP_HANDS_ENABLE
__attribute__ ((weak))
// swap-hands action needs a matrix to define the swap
const keypos_t hand_swap_config[MATRIX_ROWS][MATRIX_COLS] = {
    /* Left hand, matrix positions */
    {{0,11}, {1,11}, {2,11}, {3,11}, {4,11}, {5,11}},
    {{0,10}, {1,10}, {2,10}, {3,10}, {4,10}, {5,10}},
    {{0,9},  {1,9},  {2,9},  {3,9},  {4,9},  {5,9}},
    {{0,8},  {1,8},  {2,8},  {3,8},  {4,8},  {5,8}},
    {{0,7},  {1,7},  {2,7},  {3,7},  {4,7},  {5,7}},
    {{0,6},  {1,6},  {2,6},  {3,6},  {4,6},  {5,6}},

    /* Right hand, matrix positions */
    {{0,5},  {1,5},  {2,5},  {3,5},  {4,5},  {5,5}},
    {{0,4},  {1,4},  {2,4},  {3,4},  {4,4},  {5,4}},
    {{0,3},  {1,3},  {2,3},  {3,3},  {4,3},  {5,3}},
    {{0,2},  {1,2},  {2,2},  {3,2},  {4,2},  {5,2}},
    {{0,1},  {1,1},  {2,1},  {3,1},  {4,1},  {5,1}},
    {{0,0},  {1,0},  {2,0},  {3,0},  {4,0},  {5,0}},
    {{0,11}, {0,10}, {0,9},  {0,8},  {0,7},  {0,6},     {0,5},  {0,4},  {0,3},  {0,2},  {0,1},  {0,0}},
    {{1,11}, {1,11}, {1,9},  {1,8},  {1,7},  {1,6},     {1,5},  {1,4},  {1,3},  {1,2},  {1,1},  {1,0}},
    {{2,11}, {2,12}, {2,9},  {2,8},  {2,7},  {2,6},     {2,5},  {2,4},  {2,3},  {2,2},  {2,1},  {2,0}},
    {{3,11}, {3,13}, {3,9},  {3,8},  {3,7},  {3,6},     {3,5},  {3,4},  {3,3},  {3,2},  {3,1},  {3,0}},
    {{4,11}, {4,14}, {4,9},  {4,8},  {4,7},  {4,6},     {4,5},  {4,4},  {4,3},  {4,2},  {4,1},  {4,0}},
    {{5,11}, {5,15}, {5,9},  {5,8},  {5,7},  {5,6},     {5,5},  {5,4},  {5,3},  {5,2},  {5,1},  {5,0}},
};
#endif

M keyboards/handwired/dactyl/dactyl.h => keyboards/handwired/dactyl/dactyl.h +34 -41
@@ 10,7 10,6 @@
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz       0x00

// I2C aliases and register addresses (see "mcp23018.md")
#define I2C_ADDR        0b0100000
#define I2C_ADDR_WRITE  ( (I2C_ADDR<<1) | I2C_WRITE )
#define I2C_ADDR_READ   ( (I2C_ADDR<<1) | I2C_READ  )


@@ 23,52 22,46 @@
#define OLATA           0x14            // output latch register
#define OLATB           0x15

extern uint8_t mcp23018_status;
extern uint8_t expander_status;
extern uint8_t expander_input_pin_mask;
extern bool i2c_initialized;

void init_dactyl(void);
uint8_t init_mcp23018(void);
void init_expander(void);

#define KEYMAP(                                                 \
                                                                \
    /* left hand, spatial positions */                          \
    k00,k01,k02,k03,k04,k05,                                    \
    k10,k11,k12,k13,k14,k15,                                    \
    k20,k21,k22,k23,k24,k25,                                    \
    k30,k31,k32,k33,k34,k35,                                    \
    k40,k41,k42,k43,k44,                                        \
                            k55,k50,                            \
                                k54,                            \
                        k53,k52,k51,                            \
                                                                \
    /* right hand, spatial positions */                         \
            k06,k07,k08,k09,k0A,k0B,                            \
            k16,k17,k18,k19,k1A,k1B,                            \
            k26,k27,k28,k29,k2A,k2B,                            \
            k36,k37,k38,k39,k3A,k3B,                            \
                k47,k48,k49,k4A,k4B,                            \
    k5B,k56,                                                    \
    k57,                                                        \
    k5A,k59,k58 )                                               \
                                                                \
   /* matrix positions */                                       \
   {                                                            \
    { k00, k10, k20,   k30, k40,   k50   }, \
    { k01, k11, k21,   k31, k41,   k51   }, \
    { k02, k12, k22,   k32, k42,   k52   }, \
    { k03, k13, k23,   k33, k43,   k53   }, \
    { k04, k14, k24,   k34, k44,   k54   }, \
    { k05, k15, k25,   k35, KC_NO, k55   }, \
                                            \
    { k06, k16, k26,   k36, KC_NO, k56   }, \
    { k07, k17, k27,   k37, k47,   k57   }, \
    { k08, k18, k28,   k38, k48,   k58   }, \
    { k09, k19, k29,   k39, k49,   k59   }, \
    { k0A, k1A, k2A,   k3A, k4A,   k5A   }, \
    { k0B, k1B, k2B,   k3B, k4B,   k5B   }  \
#define KEYMAP(                                                         \
                                                                        \
    /* left hand, spatial positions */                                  \
    k00,k01,k02,k03,k04,k05,                                            \
    k10,k11,k12,k13,k14,k15,                                            \
    k20,k21,k22,k23,k24,k25,                                            \
    k30,k31,k32,k33,k34,k35,                                            \
    k40,k41,k42,k43,k44,                                                \
                            k55,k50,                                    \
                                k54,                                    \
                        k53,k52,k51,                                    \
                                                                        \
    /* right hand, spatial positions */                                 \
            k06,k07,k08,k09,k0A,k0B,                                    \
            k16,k17,k18,k19,k1A,k1B,                                    \
            k26,k27,k28,k29,k2A,k2B,                                    \
            k36,k37,k38,k39,k3A,k3B,                                    \
                k47,k48,k49,k4A,k4B,                                    \
    k5B,k56,                                                            \
    k57,                                                                \
    k5A,k59,k58 )                                                       \
                                                                        \
   /* matrix positions */                                               \
   {                                                                    \
    { k00, k01, k02, k03, k04, k05,     k06, k07, k08, k09, k0A, k0B }, \
    { k10, k11, k12, k13, k14, k15,     k16, k17, k18, k19, k1A, k1B }, \
    { k20, k21, k22, k23, k24, k25,     k26, k27, k28, k29, k2A, k2B }, \
    { k30, k31, k32, k33, k34, k35,     k36, k37, k38, k39, k3A, k3B }, \
    { k40, k41, k42, k43, k44, KC_NO, KC_NO, k47, k48, k49, k4A, k4B }, \
    { k50, k51, k52, k53, k54, k55,     k56, k57, k58, k59, k5A, k5B }, \
   }



#define LAYOUT_dactyl KEYMAP

#endif

M keyboards/handwired/dactyl/matrix.c => keyboards/handwired/dactyl/matrix.c +352 -203
@@ 1,5 1,4 @@
/*

Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
Copyright 2017 Erin Call <hello@erincall.com>



@@ 16,10 15,6 @@ GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

/*
 * scan matrix
 */
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>


@@ 31,47 26,66 @@ along with this program.  If not, see <http://www.gnu.org/licenses/>.
#include "matrix.h"
#include "dactyl.h"
#include "i2cmaster.h"
#ifdef DEBUG_MATRIX_SCAN_RATE
#include  "timer.h"
#include "timer.h"


/* Set 0 if debouncing isn't needed */

#ifndef DEBOUNCING_DELAY
#   define DEBOUNCING_DELAY 5
#endif

/*
 * This constant define not debouncing time in msecs, but amount of matrix
 * scan loops which should be made to get stable debounced results.
 *
 * On the Dactyl, the matrix scan rate is relatively low, because
 * communicating with the left hand's I/O expander is slower than simply
 * selecting local pins.
 * Now it's only 317 scans/second, or about 3.15 msec/scan.
 * According to Cherry specs, debouncing time is 5 msec.
 *
 * And so, there is no sense to have DEBOUNCE higher than 2.
 */

#ifndef DEBOUNCE
#   define DEBOUNCE	5
#if (DEBOUNCING_DELAY > 0)
    static uint16_t debouncing_time;
    static bool debouncing = false;
#endif

#ifdef MATRIX_MASKED
    extern const matrix_row_t matrix_mask[];
#endif

#if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
#endif

/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];

// Debouncing: store for each key the number of scans until it's eligible to
// change.  When scanning the matrix, ignore any changes in keys that have
// already changed in the last DEBOUNCE scans.
static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS];

static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static matrix_row_t matrix_debouncing[MATRIX_ROWS];

#if (DIODE_DIRECTION == COL2ROW)
    static void init_cols(void);
    static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
    static void unselect_rows(void);
    static void select_row(uint8_t row);
    static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
    static void init_rows(void);
    static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
    static void unselect_cols(void);
    static void select_col(uint8_t col);
    static void unselect_col(uint8_t col);
#endif

static uint8_t mcp23018_reset_loop;
static uint8_t expander_reset_loop;
uint8_t expander_status;
uint8_t expander_input_pin_mask;
bool i2c_initialized = false;

#ifdef DEBUG_MATRIX_SCAN_RATE
uint32_t matrix_timer;
uint32_t matrix_scan_count;
#endif

#define ROW_SHIFTER ((matrix_row_t)1)
#if (DIODE_DIRECTION == COL2ROW)
// bitmask to ensure the row state from the expander only applies to its columns
#define EXPANDER_MASK ((matrix_row_t)0b00111111)
#endif

__attribute__ ((weak))
void matrix_init_user(void) {}


@@ 103,20 117,20 @@ uint8_t matrix_cols(void)

void matrix_init(void)
{
    // initialize row and col

    mcp23018_status = init_mcp23018();

    init_expander();

#if (DIODE_DIRECTION == COL2ROW)
    unselect_rows();
    init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
    unselect_cols();
    init_rows();
#endif

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
        for (uint8_t j=0; j < MATRIX_COLS; ++j) {
            debounce_matrix[i * MATRIX_COLS + j] = 0;
        }
        matrix_debouncing[i] = 0;
    }

#ifdef DEBUG_MATRIX_SCAN_RATE


@@ 125,59 139,100 @@ void matrix_init(void)
#endif

    matrix_init_quantum();

}

void matrix_power_up(void) {
    mcp23018_status = init_mcp23018();

    unselect_rows();
    init_cols();
void init_expander(void) {
    if (! i2c_initialized) {
        i2c_init();
        wait_us(1000000);
    }

    // initialize matrix state: all keys off
    for (uint8_t i=0; i < MATRIX_ROWS; i++) {
        matrix[i] = 0;
    if (! expander_input_pin_mask) {
#if (DIODE_DIRECTION == COL2ROW)
        for (int col = 0; col < MATRIX_COLS; col++) {
            if (col_expanded[col]) {
                expander_input_pin_mask |= (1 << expander_col_pins[col]);
            }
        }
#elif (DIODE_DIRECTION == ROW2COL)
        for (int row = 0; row < MATRIX_ROWS; row++) {
            expander_input_pin_mask |= (1 << expander_row_pins[row]);
        }
#endif
    }

#ifdef DEBUG_MATRIX_SCAN_RATE
    matrix_timer = timer_read32();
    matrix_scan_count = 0;
    expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
    expander_status = i2c_write(IODIRA);         if (expander_status) goto out;

    /*
    Pin direction and pull-up depends on both the diode direction
    and on whether the column register is 0 ("A") or 1 ("B"):
    +-------+---------------+---------------+
    |       | ROW2COL       | COL2ROW       |
    +-------+---------------+---------------+
    | Reg 0 | input, output | output, input |
    +-------+---------------+---------------+
    | Reg 1 | output, input | input, output |
    +-------+---------------+---------------+
    */

#if (EXPANDER_COLUMN_REGISTER == 0)
#   if (DIODE_DIRECTION == COL2ROW)
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
        expander_status = i2c_write(0);                       if (expander_status) goto out;
#   elif (DIODE_DIRECTION == ROW2COL)
        expander_status = i2c_write(0);                       if (expander_status) goto out;
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
#   endif
#elif (EXPANDER_COLUMN_REGISTER == 1)
#   if (DIODE_DIRECTION == COL2ROW)
        expander_status = i2c_write(0);                       if (expander_status) goto out;
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
#   elif (DIODE_DIRECTION == ROW2COL)
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
        expander_status = i2c_write(0);                       if (expander_status) goto out;
#   endif
#endif
}

// Returns a matrix_row_t whose bits are set if the corresponding key should be
// eligible to change in this scan.
matrix_row_t debounce_mask(uint8_t row) {
  matrix_row_t result = 0;
  for (uint8_t j=0; j < MATRIX_COLS; ++j) {
    if (debounce_matrix[row * MATRIX_COLS + j]) {
      --debounce_matrix[row * MATRIX_COLS + j];
    } else {
      result |= (1 << j);
    }
  }
  return result;
}
    i2c_stop();

    // set pull-up
    // - unused  : off : 0
    // - input   : on  : 1
    // - driving : off : 0
    expander_status = i2c_start(I2C_ADDR_WRITE);              if (expander_status) goto out;
    expander_status = i2c_write(GPPUA);                       if (expander_status) goto out;
#if (EXPANDER_COLUMN_REGISTER == 0)
#   if (DIODE_DIRECTION == COL2ROW)
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
        expander_status = i2c_write(0);                       if (expander_status) goto out;
#   elif (DIODE_DIRECTION == ROW2COL)
        expander_status = i2c_write(0);                       if (expander_status) goto out;
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
#   endif
#elif (EXPANDER_COLUMN_REGISTER == 1)
#   if (DIODE_DIRECTION == COL2ROW)
        expander_status = i2c_write(0);                       if (expander_status) goto out;
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
#   elif (DIODE_DIRECTION == ROW2COL)
        expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
        expander_status = i2c_write(0);                       if (expander_status) goto out;
#   endif
#endif

// Report changed keys in the given row.  Resets the debounce countdowns
// corresponding to each set bit in 'change' to DEBOUNCE.
void debounce_report(matrix_row_t change, uint8_t row) {
  for (uint8_t i = 0; i < MATRIX_COLS; ++i) {
    if (change & (1 << i)) {
      debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE;
    }
  }
out:
    i2c_stop();
}

uint8_t matrix_scan(void)
{
    if (mcp23018_status) { // if there was an error
        if (++mcp23018_reset_loop == 0) {
            // since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
    if (expander_status) { // if there was an error
        if (++expander_reset_loop == 0) {
            // since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
            // this will be approx bit more frequent than once per second
            print("trying to reset mcp23018\n");
            mcp23018_status = init_mcp23018();
            if (mcp23018_status) {
            print("trying to reset expander\n");
            init_expander();
            if (expander_status) {
                print("left side not responding\n");
            } else {
                print("left side attached\n");


@@ 199,37 254,71 @@ uint8_t matrix_scan(void)
    }
#endif

    for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
        select_row(i);
        wait_us(30);  // without this wait read unstable value.
        matrix_row_t mask = debounce_mask(i);
        matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask);
        debounce_report(cols ^ matrix[i], i);
        matrix[i] = cols;

        unselect_rows();
#if (DIODE_DIRECTION == COL2ROW)
    for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
#       if (DEBOUNCING_DELAY > 0)
            bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);

            if (matrix_changed) {
                debouncing = true;
                debouncing_time = timer_read();
            }
#       else
            read_cols_on_row(matrix, current_row);
#       endif
    }

    matrix_scan_quantum();
#elif (DIODE_DIRECTION == ROW2COL)
    for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
#       if (DEBOUNCING_DELAY > 0)
            bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);

            if (matrix_changed) {
                debouncing = true;
                debouncing_time = timer_read();
            }
#       else
            read_rows_on_col(matrix, current_col);
#       endif

    }
#endif

#   if (DEBOUNCING_DELAY > 0)
        if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
            for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
                matrix[i] = matrix_debouncing[i];
            }
            debouncing = false;
        }
#   endif

    matrix_scan_quantum();
    return 1;
}

bool matrix_is_modified(void) // deprecated and evidently not called.
{
#if (DEBOUNCING_DELAY > 0)
    if (debouncing) return false;
#endif
    return true;
}

inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
    return (matrix[row] & ((matrix_row_t)1<<col));
    return (matrix[row] & (ROW_SHIFTER << col));
}

inline
matrix_row_t matrix_get_row(uint8_t row)
{
#ifdef MATRIX_MASKED
    return matrix[row] & matrix_mask[row];
#else
    return matrix[row];
#endif
}

void matrix_print(void)


@@ 251,143 340,203 @@ uint8_t matrix_key_count(void)
    return count;
}

/* Column pin configuration
 *
 * Teensy
 * col: 0   1   2   3   4   5
 * pin: F0  F1  F4  F5  F6  F7
 *
 * MCP23018
 * col: 0   1   2   3   4   5
 * pin: B5  B4  B3  B2  B1  B0
 */
static void  init_cols(void)
{
    // init on mcp23018
    // not needed, already done as part of init_mcp23018()
#if (DIODE_DIRECTION == COL2ROW)

    // init on teensy
    // Input with pull-up(DDR:0, PORT:1)
    DDRF  &= ~(1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
    PORTF |=  (1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
static void init_cols(void) {
    for (uint8_t x = 0; x < MATRIX_COLS; x++) {
        if (! col_expanded[x]) {
            uint8_t pin = onboard_col_pins[x];
            _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
            _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
        }
    }
}

static matrix_row_t read_cols(uint8_t row)
{
    if (row < 6) {
        if (mcp23018_status) { // if there was an error
            return 0;
        } else {
            uint8_t data = 0;
            mcp23018_status = i2c_start(I2C_ADDR_WRITE);    if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOB);             if (mcp23018_status) goto out;
            mcp23018_status = i2c_start(I2C_ADDR_READ);     if (mcp23018_status) goto out;
            data = i2c_readNak();
            data = ~data;
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
    // Store last value of row prior to reading
    matrix_row_t last_row_value = current_matrix[current_row];

    // Clear data in matrix row
    current_matrix[current_row] = 0;

    // Select row and wait for row selection to stabilize
    select_row(current_row);
    wait_us(30);

    // Read columns from expander, unless it's in an error state
    if (! expander_status) {
        expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
        expander_status = i2c_write(GPIOA);          if (expander_status) goto out;
        expander_status = i2c_start(I2C_ADDR_READ);  if (expander_status) goto out;

        current_matrix[current_row] |= (~i2c_readNak()) & EXPANDER_MASK;

        out:
            i2c_stop();
            return data;
    }

    // Read columns from onboard pins
    for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
        if (! col_expanded[col_index]) {
            uint8_t pin = onboard_col_pins[col_index];
            uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
            current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
        }
    } else {
        // read from teensy
        return
            (PINF&(1<<0) ? 0 : (1<<0)) |
            (PINF&(1<<1) ? 0 : (1<<1)) |
            (PINF&(1<<4) ? 0 : (1<<2)) |
            (PINF&(1<<5) ? 0 : (1<<3)) |
            (PINF&(1<<6) ? 0 : (1<<4)) |
            (PINF&(1<<7) ? 0 : (1<<5)) ;
    }

    unselect_row(current_row);

    return (last_row_value != current_matrix[current_row]);
}

/* Row pin configuration
 *
 * Teensy
 * row: 6   7   8   9   10  11
 * pin: B1  B2  B3  D2  D3  C6
 *
 * MCP23018
 * row: 0   1   2   3   4   5
 * pin: A0  A1  A2  A3  A4  A5
 */
static void unselect_rows(void)
{
    // unselect on mcp23018
    if (mcp23018_status) { // if there was an error
        // do nothing
    } else {
        // set all rows hi-Z : 1
        mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
        mcp23018_status = i2c_write(GPIOA);          if (mcp23018_status) goto out;
        mcp23018_status = i2c_write(0xFF);           if (mcp23018_status) goto out;
static void select_row(uint8_t row) {
    // select on expander, unless it's in an error state
    if (! expander_status) {
        // set active row low  : 0
        // set other rows hi-Z : 1
        expander_status = i2c_start(I2C_ADDR_WRITE);   if (expander_status) goto out;
        expander_status = i2c_write(GPIOB);            if (expander_status) goto out;
        expander_status = i2c_write(0xFF & ~(1<<row)); if (expander_status) goto out;
    out:
        i2c_stop();
    }

    // select on teensy
    uint8_t pin = onboard_row_pins[row];
    _SFR_IO8((pin >> 4) + 1) |=  _BV(pin & 0xF); // OUT
    _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}

static void unselect_row(uint8_t row)
{
    // No need to explicitly unselect expander pins--their I/O state is
    // set simultaneously, with a single bitmask sent to i2c_write. When
    // select_row selects a single pin, it implicitly unselects all the
    // other ones.

    // unselect on teensy
    // Hi-Z(DDR:0, PORT:0) to unselect
    DDRB  &= ~(1<<1 | 1<<2 | 1<<3);
    PORTB &= ~(1<<1 | 1<<2 | 1<<3);
    DDRD  &= ~(1<<2 | 1<<3);
    PORTD &= ~(1<<2 | 1<<3);
    DDRC  &= ~(1<<6);
    PORTC &= ~(1<<6);
    uint8_t pin = onboard_row_pins[row];
    _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
    _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // LOW
}

static void unselect_rows(void) {
    for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
        unselect_row(x);
    }
}

/* Row pin configuration
 *
 * Teensy
 * row: 6   7   8   9   10  11
 * pin: B1  B2  B3  D2  D3  C6
 *
 * MCP23018
 * row: 0   1   2   3   4   5
 * pin: A0  A1  A2  A3  A4  A5
 */
static void select_row(uint8_t row)
#elif (DIODE_DIRECTION == ROW2COL)

static void init_rows(void)
{
    if (row < 6) {
        // select on mcp23018
        if (mcp23018_status) { // if there was an error
    for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
        uint8_t pin = onboard_row_pins[x];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
    bool matrix_changed = false;

    uint8_t column_state = 0;

    //select col and wait for selection to stabilize
    select_col(current_col);
    wait_us(30);

    if (current_col < 6) {
        // read rows from expander
        if (expander_status) {
            // it's already in an error state; nothing we can do
            return false;
        }

        expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
        expander_status = i2c_write(GPIOB);          if (expander_status) goto out;
        expander_status = i2c_start(I2C_ADDR_READ);  if (expander_status) goto out;
        column_state = i2c_readNak();

        out:
            i2c_stop();

        column_state = ~column_state;
    } else {
        for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
            if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
                column_state |= (1 << current_row);
            }
        }
    }

    for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
        // Store last value of row prior to reading
        matrix_row_t last_row_value = current_matrix[current_row];

        if (column_state & (1 << current_row)) {
            // key closed; set state bit in matrix
            current_matrix[current_row] |= (ROW_SHIFTER << current_col);
        } else {
            // key open; clear state bit in matrix
            current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
        }

        // Determine whether the matrix changed state
        if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
        {
            matrix_changed = true;
        }
    }

    unselect_col(current_col);

    return matrix_changed;
}

static void select_col(uint8_t col)
{
    if (col_expanded[col]) {
        // select on expander
        if (expander_status) { // if there was an error
            // do nothing
        } else {
            // set active row low  : 0
            // set other rows hi-Z : 1
            mcp23018_status = i2c_start(I2C_ADDR_WRITE);   if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(GPIOA);            if (mcp23018_status) goto out;
            mcp23018_status = i2c_write(0xFF & ~(1<<row)); if (mcp23018_status) goto out;
            // set active col low  : 0
            // set other cols hi-Z : 1
            expander_status = i2c_start(I2C_ADDR_WRITE);   if (expander_status) goto out;
            expander_status = i2c_write(GPIOA);            if (expander_status) goto out;
            expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
        out:
            i2c_stop();
        }
    } else {
        // select on teensy
        // Output low(DDR:1, PORT:0) to select
        switch (row) {
            case 6:
                DDRB  |= (1<<1);
                PORTB &= ~(1<<1);
                break;
            case 7:
                DDRB  |= (1<<2);
                PORTB &= ~(1<<2);
                break;
            case 8:
                DDRB  |= (1<<3);
                PORTB &= ~(1<<3);
                break;
            case 9:
                DDRD  |= (1<<2);
                PORTD &= ~(1<<3);
                break;
            case 10:
                DDRD  |= (1<<3);
                PORTD &= ~(1<<3);
                break;
            case 11:
                DDRC  |= (1<<6);
                PORTC &= ~(1<<6);
                break;
        }
        uint8_t pin = onboard_col_pins[col];
        _SFR_IO8((pin >> 4) + 1) |=  _BV(pin & 0xF); // OUT
        _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
    }
}

static void unselect_col(uint8_t col)
{
    if (col_expanded[col]) {
        // No need to explicitly unselect expander pins--their I/O state is
        // set simultaneously, with a single bitmask sent to i2c_write. When
        // select_col selects a single pin, it implicitly unselects all the
        // other ones.
    } else {
        // unselect on teensy
        uint8_t pin = onboard_col_pins[col];
        _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
        _SFR_IO8((pin >> 4) + 2) |=  _BV(pin & 0xF); // HI
    }
}

static void unselect_cols(void)
{
    for(uint8_t x = 0; x < MATRIX_COLS; x++) {
        unselect_col(x);
    }
}
#endif