@@ 1,16 1,15 @@
pub mod tsp;
pub mod graph;
-use tsp::{EdgeRecombinationCrossover, MovePerturbation, ReverseSubsequencePerturbation, SwapPerturbation, TSPBinaryStringWrapper, TSPInstance, TSPRandomInitializer};
-use nalgebra::{Const, Dim, Dyn, U100};
+use tsp::{EdgeRecombinationCrossover, MovePerturbation, NodePermutation, ReverseSubsequencePerturbation, SwapPerturbation, TSPBinaryStringWrapper, TSPInstance, TSPRandomInitializer};
+use nalgebra::{Dim, Dyn};
use eoa_lib::{
- comparison::MinimizingOperator, crossover::BinaryNPointCrossover, evolution::evolution_algorithm, initializer::{Initializer, RandomInitializer}, local_search::local_search_first_improving, pairing::AdjacentPairing, perturbation::{apply_to_perturbations, BinaryStringBitPerturbation, BinaryStringFlipNPerturbation, BinaryStringFlipPerturbation, BinaryStringSingleBitPerturbation, CombinedPerturbation, MutationPerturbation}, replacement::{BestReplacement, TournamentReplacement}, selection::{BestSelection, TournamentSelection}, terminating::{MaximumCyclesTerminatingCondition, NoBetterForCyclesTerminatingCondition}
+ binary_string::BinaryString, comparison::MinimizingOperator, crossover::BinaryNPointCrossover, evolution::{evolution_algorithm, EvolutionStats}, initializer::{Initializer, RandomInitializer}, local_search::{local_search_first_improving, LocalSearchStats}, pairing::AdjacentPairing, perturbation::{apply_to_perturbations, BinaryStringBitPerturbation, BinaryStringFlipNPerturbation, BinaryStringSingleBitPerturbation, CombinedPerturbation, MutationPerturbation}, replacement::{BestReplacement, TournamentReplacement}, selection::{BestSelection, TournamentSelection}, terminating::MaximumCyclesTerminatingCondition
};
use rand::rng;
use std::env;
use std::fs::{File, create_dir_all};
-use std::io::{BufRead, BufReader, Read, Write};
-use std::path::Path;
+use std::io::{BufRead, BufReader, Write};
use flate2::read::GzDecoder;
use chrono::{DateTime, Local};
@@ 56,6 55,129 @@ fn load_tsp_instance(filename: &str) -> Result<TSPInstance<Dyn>, Box<dyn std::er
Ok(TSPInstance::new_dyn(cities))
}
+#[derive(Debug, Clone)]
+struct PlotData {
+ best_solution: NodePermutation<Dyn>,
+ iterations: Vec<usize>,
+ evaluations: Vec<f64>,
+ final_cost: f64,
+ total_iterations: usize,
+ algorithm_name: String,
+}
+
+fn extract_evolution_data(
+ stats: &EvolutionStats<NodePermutation<Dyn>, f64>,
+ final_solution: &NodePermutation<Dyn>,
+ final_evaluation: f64,
+ final_iteration: usize,
+ initial_population_size: usize,
+ offspring_count: usize,
+) -> PlotData {
+ let mut iterations = Vec::new();
+ let mut evaluations = Vec::new();
+
+ for candidate in &stats.best_candidates {
+ let fitness_evaluations = initial_population_size + candidate.iteration * offspring_count;
+ iterations.push(fitness_evaluations);
+ evaluations.push(candidate.evaluated_chromosome.evaluation);
+ }
+
+ // Add final result
+ let final_fitness_evaluations = initial_population_size + final_iteration * offspring_count;
+ iterations.push(final_fitness_evaluations);
+ evaluations.push(final_evaluation);
+
+ PlotData {
+ best_solution: final_solution.clone(),
+ iterations,
+ evaluations,
+ final_cost: final_evaluation,
+ total_iterations: final_iteration,
+ algorithm_name: "Evolution Algorithm".to_string(),
+ }
+}
+
+fn extract_binary_evolution_data(
+ stats: &EvolutionStats<BinaryString<Dyn>, f64>,
+ final_solution: &NodePermutation<Dyn>,
+ final_evaluation: f64,
+ final_iteration: usize,
+ initial_population_size: usize,
+ offspring_count: usize,
+) -> PlotData {
+ let mut iterations = Vec::new();
+ let mut evaluations = Vec::new();
+
+ for candidate in &stats.best_candidates {
+ let fitness_evaluations = initial_population_size + candidate.iteration * offspring_count;
+ iterations.push(fitness_evaluations);
+ evaluations.push(candidate.evaluated_chromosome.evaluation);
+ }
+
+ // Add final result
+ let final_fitness_evaluations = initial_population_size + final_iteration * offspring_count;
+ iterations.push(final_fitness_evaluations);
+ evaluations.push(final_evaluation);
+
+ PlotData {
+ best_solution: final_solution.clone(),
+ iterations,
+ evaluations,
+ final_cost: final_evaluation,
+ total_iterations: final_iteration,
+ algorithm_name: "Evolution Algorithm (Binary)".to_string(),
+ }
+}
+
+fn extract_local_search_data(
+ stats: &LocalSearchStats<NodePermutation<Dyn>, f64>,
+ final_solution: &NodePermutation<Dyn>,
+ final_evaluation: f64,
+ final_cycle: usize,
+) -> PlotData {
+ let mut iterations = Vec::new();
+ let mut evaluations = Vec::new();
+
+ for candidate in stats.candidates() {
+ iterations.push(candidate.cycle);
+ evaluations.push(candidate.fit);
+ }
+
+ // Add final result
+ iterations.push(final_cycle);
+ evaluations.push(final_evaluation);
+
+ PlotData {
+ best_solution: final_solution.clone(),
+ iterations,
+ evaluations,
+ final_cost: final_evaluation,
+ total_iterations: final_cycle,
+ algorithm_name: "Local Search".to_string(),
+ }
+}
+
+fn save_results(
+ instance: &TSPInstance<Dyn>,
+ plot_data: &PlotData,
+ base_path: &str,
+) -> Result<(), Box<dyn std::error::Error>> {
+ // Plot the best solution
+ let plot_path = format!("{}.png", base_path);
+ instance.draw_solution(&plot_data.best_solution, &plot_path)?;
+
+ // Save statistics to CSV
+ let stats_path = format!("{}.csv", base_path);
+ let mut stats_file = File::create(&stats_path)?;
+ writeln!(stats_file, "fitness_evaluations,evaluation")?;
+
+ for (iteration, evaluation) in plot_data.iterations.iter().zip(plot_data.evaluations.iter()) {
+ writeln!(stats_file, "{},{}", iteration, evaluation)?;
+ }
+
+ Ok(())
+}
+
fn load_optimal_cost(instance_filename: &str) -> Result<f64, Box<dyn std::error::Error>> {
let instance_name = std::path::Path::new(instance_filename)
.file_stem()
@@ 85,7 207,7 @@ fn load_optimal_cost(instance_filename: &str) -> Result<f64, Box<dyn std::error:
Err(format!("Optimal cost not found for instance '{}'", instance_name).into())
}
-fn run_evolution_algorithm(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_path: &str) -> Result<(), Box<dyn std::error::Error>> {
+fn run_evolution_algorithm(instance: &TSPInstance<Dyn>) -> Result<PlotData, Box<dyn std::error::Error>> {
let mut rng = rng();
let initializer = TSPRandomInitializer::new();
let dimension = instance.dimension();
@@ 112,10 234,6 @@ fn run_evolution_algorithm(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_
let initial_population = initializer.initialize(dimension, population_size, &mut rng);
let initial_population = eoa_lib::replacement::Population::from_vec(initial_population);
- let evaluated_initial = initial_population.clone().evaluate(instance)?;
- let initial_best = evaluated_initial.best_candidate(&better_than_operator);
- println!("Initial best cost: {:.2}", initial_best.evaluation);
-
// Run evolution algorithm
let parents_count = 250;
let result = evolution_algorithm(
@@ 143,37 261,22 @@ fn run_evolution_algorithm(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_
}
)?;
- // Plot the best solution
- let best_solution = &result.best_candidate.chromosome;
- let plot_path = format!("{}.png", base_path);
- instance.draw_solution(best_solution, &plot_path)?;
-
- // Save statistics to CSV
- let stats_path = format!("{}.csv", base_path);
- let mut stats_file = File::create(&stats_path)?;
- writeln!(stats_file, "fitness_evaluations,evaluation")?;
-
- // Calculate fitness evaluations: initial_population + iteration * offspring_count
- // offspring_count = parents_count / 2 (due to adjacent pairing)
+ // Extract plotting data
let offspring_count = parents_count / 2;
let initial_population_size = initial_population.iter().count();
-
- for candidate in &result.stats.best_candidates {
- let fitness_evaluations = initial_population_size + candidate.iteration * offspring_count;
- writeln!(stats_file, "{},{}", fitness_evaluations, candidate.evaluated_chromosome.evaluation)?;
- }
- writeln!(stats_file, "{},{}", result.iterations, result.stats.best_candidates.iter().last().unwrap().evaluated_chromosome.evaluation)?;
-
- println!("Evolution completed in {} generations", result.iterations);
- println!("Final cost: {:.2}", result.best_candidate.evaluation);
- println!("Gap to optimal: {:.2} ({:.1}%)",
- result.best_candidate.evaluation - optimal_cost,
- ((result.best_candidate.evaluation - optimal_cost) / optimal_cost) * 100.0);
-
- Ok(())
+ let plot_data = extract_evolution_data(
+ &result.stats,
+ &result.best_candidate.chromosome,
+ result.best_candidate.evaluation,
+ result.iterations,
+ initial_population_size,
+ offspring_count,
+ );
+
+ Ok(plot_data)
}
-fn run_evolution_algorithm_binary(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_path: &str) -> Result<(), Box<dyn std::error::Error>> {
+fn run_evolution_algorithm_binary(instance: &TSPInstance<Dyn>) -> Result<PlotData, Box<dyn std::error::Error>> {
let mut rng = rng();
let initializer = RandomInitializer::new_binary();
let output_dimension = instance.dimension();
@@ 204,9 307,6 @@ fn run_evolution_algorithm_binary(instance: &TSPInstance<Dyn>, optimal_cost: f64
let initial_population = eoa_lib::replacement::Population::from_vec(initial_population);
let fitness = TSPBinaryStringWrapper::new(instance, input_dimension, output_dimension).unwrap();
- let evaluated_initial = initial_population.clone().evaluate(&fitness)?;
- let initial_best = evaluated_initial.best_candidate(&better_than_operator);
- println!("Initial best cost: {:.2}", initial_best.evaluation);
// Run evolution algorithm
let parents_count = 250;
@@ 251,44 351,29 @@ fn run_evolution_algorithm_binary(instance: &TSPInstance<Dyn>, optimal_cost: f64
}
)?;
- // Plot the best solution
- let best_solution = &result.best_candidate.chromosome;
- let plot_path = format!("{}.png", base_path);
- instance.draw_solution(&fitness.to_permutation(best_solution).unwrap(), &plot_path)?;
-
- // Save statistics to CSV
- let stats_path = format!("{}.csv", base_path);
- let mut stats_file = File::create(&stats_path)?;
- writeln!(stats_file, "fitness_evaluations,evaluation")?;
-
- // Calculate fitness evaluations: initial_population + iteration * offspring_count
- // offspring_count = parents_count / 2 (due to adjacent pairing)
+ // Extract plotting data
let offspring_count = parents_count / 2;
let initial_population_size = initial_population.iter().count();
-
- for candidate in &result.stats.best_candidates {
- let fitness_evaluations = initial_population_size + candidate.iteration * offspring_count;
- writeln!(stats_file, "{},{}", fitness_evaluations, candidate.evaluated_chromosome.evaluation)?;
- }
- writeln!(stats_file, "{},{}", result.iterations, result.stats.best_candidates.iter().last().unwrap().evaluated_chromosome.evaluation)?;
-
- println!("Evolution completed in {} generations", result.iterations);
- println!("Final cost: {:.2}", result.best_candidate.evaluation);
- println!("Gap to optimal: {:.2} ({:.1}%)",
- result.best_candidate.evaluation - optimal_cost,
- ((result.best_candidate.evaluation - optimal_cost) / optimal_cost) * 100.0);
-
- Ok(())
+ let best_permutation = fitness.to_permutation(&result.best_candidate.chromosome).unwrap();
+ let plot_data = extract_binary_evolution_data(
+ &result.stats,
+ &best_permutation,
+ result.best_candidate.evaluation,
+ result.iterations,
+ initial_population_size,
+ offspring_count,
+ );
+
+ Ok(plot_data)
}
-fn run_local_search(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_path: &str) -> Result<(), Box<dyn std::error::Error>> {
+fn run_local_search(instance: &TSPInstance<Dyn>) -> Result<PlotData, Box<dyn std::error::Error>> {
let mut rng = rng();
let initializer = TSPRandomInitializer::new();
let dimension = instance.dimension();
// Create a random initial solution
let initial_solution = initializer.initialize_single(dimension, &mut rng);
- println!("Initial cost: {:.2}", instance.solution_cost(&initial_solution));
// Run local search
let mut perturbation = MovePerturbation::new();
@@ 304,27 389,15 @@ fn run_local_search(instance: &TSPInstance<Dyn>, optimal_cost: f64, base_path: &
&mut rng,
)?;
- // Plot the improved solution
- let plot_path = format!("{}.png", base_path);
- instance.draw_solution(&result.best_candidate.pos, &plot_path)?;
-
- // Save statistics to CSV
- let stats_path = format!("{}.csv", base_path);
- let mut stats_file = File::create(&stats_path)?;
- writeln!(stats_file, "fitness_evaluations,evaluation")?;
- // For local search, each cycle = 1 fitness evaluation
- for candidate in result.stats.candidates() {
- writeln!(stats_file, "{},{}", candidate.cycle, candidate.fit)?;
- }
- writeln!(stats_file, "{},{}", result.cycles, result.stats.candidates().iter().last().unwrap().fit)?;
+ // Extract plotting data
+ let plot_data = extract_local_search_data(
+ &result.stats,
+ &result.best_candidate.pos,
+ result.best_candidate.fit,
+ result.cycles,
+ );
- println!("Local search completed in {} cycles", result.cycles);
- println!("Final cost: {:.2}", result.best_candidate.fit);
- println!("Gap to optimal: {:.2} ({:.1}%)",
- result.best_candidate.fit - optimal_cost,
- ((result.best_candidate.fit - optimal_cost) / optimal_cost) * 100.0);
-
- Ok(())
+ Ok(plot_data)
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
@@ 357,25 430,35 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
let timestamp = now.format("%Y-%m-%d_%H-%M-%S");
let solution_base_path = format!("{}/{}", output_dir, timestamp);
- // Run the specified algorithm
- match algorithm.as_str() {
+ // Run the specified algorithm and get plotting data
+ let plot_data = match algorithm.as_str() {
"ea" => {
println!("Running Evolution Algorithm...");
- run_evolution_algorithm(&instance, optimal_cost, &solution_base_path)?;
+ run_evolution_algorithm(&instance)?
},
"ea_binary" => {
- println!("Running Evolution Algorithm...");
- run_evolution_algorithm_binary(&instance, optimal_cost, &solution_base_path)?;
+ println!("Running Evolution Algorithm (Binary)...");
+ run_evolution_algorithm_binary(&instance)?
},
"ls" => {
println!("Running Local Search...");
- run_local_search(&instance, optimal_cost, &solution_base_path)?;
+ run_local_search(&instance)?
},
_ => {
- eprintln!("Unknown algorithm: {}. Use 'ea' or 'ls'", algorithm);
+ eprintln!("Unknown algorithm: {}. Use 'ea', 'ea_binary', or 'ls'", algorithm);
std::process::exit(1);
}
- }
+ };
+
+ // Print results
+ println!("{} completed in {} iterations", plot_data.algorithm_name, plot_data.total_iterations);
+ println!("Final cost: {:.2}", plot_data.final_cost);
+ println!("Gap to optimal: {:.2} ({:.1}%)",
+ plot_data.final_cost - optimal_cost,
+ ((plot_data.final_cost - optimal_cost) / optimal_cost) * 100.0);
+
+ // Save results (plot and CSV)
+ save_results(&instance, &plot_data, &solution_base_path)?;
println!("Created {}.png and {}.csv", solution_base_path, solution_base_path);
Ok(())